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Section 1: Iterative solution of nonlinear systems of equations

1.1 Newton’s method

Consider the following system of non linear equations:

x2 + 2yx = 4

xy = 1 .
(1.1)

Any system of two equations in two variables can be written in the form

f(x, y) = 0

g(x, y) = 0 .
(1.2)

In this case we define f(x, y) = x2 + 2xy − 4 and g(x, y) = xy − 1. All you have to do is
to take whatever is on the right hand side of each equations, and subtract it off of both
sides, leaving zero on the right. Just so we can standardize our methods, we shall always
assume our equations have zero on the right hand side. If you run into one that doesn’t,
you know what to do as your first step: Cancel off the right hand sides.

Next, introducing F(x) =
[
f(x)
g(x)

]
, we can write this as a single vector equation

F(x) = 0 . (1.3)

In the case of (1.1), we have

F(x, y) =
[
x2 + 2yx− 4

xy − 1

]
. (1.4)

In this case, we can solve (1.3) by algebra alone. For this purpose, the original formulation
is most convenient. Using the second equation in (1.1) to eliminate y, the first equation
becomes x2 = 2. Hence x = ±

√
2. The second equation says that y = 1/x and so we have

two solutions
(
√

2, 1/
√

2) and (−
√

2,−1/
√

2) .

In general, it may be quite hard to eliminate either variable, and algebra alone cannot
deliver solutions.

There is a way forward: Newton’s method is a very effective algorithm for solving such
equations. This is a “successive approximations method”. It takes a starting guess for the
solution x0, and iteratively improves the guess. The iteration scheme produces an infinite
sequence of approximate solutions {xn}. Under favorable circumstances, this sequence will
converge very rapidly toward an exact solution. In fact, the number of correct digits xn

and yn will more or less double double at each step. If you have one digit right at the
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outset, you may expect about a million correct digits after 20 iterations – more than you
are ever likely to want to keep!

To explain the use of Newton’s method, we have to cover three points:

(i) How one picks the starting guess x0.

(ii) How the iterative loop runs; i.e., the rule for determining xn+1 given xn.

(iii) How to break out of the iterative loop – we need a “stopping rule” that ensures us
our desired level of accuracy has been achieved when we stop iterating.

We begin by explaining (ii), the nature of the loop. Once we are familiar with it, we
can better understand what we have to do to start it and stop it.

The basis of the method is the linear approximation formula for F at x0:

F(x) ≈ F(x0) + JF(x0)(x− x0) . (1.5)

Using this, we replace (1.3) with the approximate equation

F(x0) + JF(x0)(x− x0) = 0 . (1.6)

Don’t let the notation obscure the simplicity of this: F(x0) is just a constant vector in
IR2 and JF(x0) is just a constant 2× 2 matrix. Using the shorter notation F(x0) = b and
JF(x0) = A, we can rewrite (1.6) as

A(x− x0) = −b .

We know what to do with this! We can solve this by row reduction. In fact, if A is
invertible, we have x− x0 = A−1b, or, what is the same thing,

x = x0 −A−1b .

Writing this out in the full notation, we have a formula for the solution of (1.6)

x = x0 − (JF(x0))−1 F(x0) . (1.7)

We now define x1 to be this solution. To get x2 from x1, we do the same thing starting
from x1. In general, we define xn+1 to be the solution of

F(xn) + JF(xn)(x− xn) = 0 . (1.8)

If JF(xn) is invertible, this gives us

xn+1 = xn − (JF(xn))−1 F(xn) . (1.9)

Now let’s run through an example.
Example 1 (Using Newton’s iteration) Consider the system of equations F(x) = 0 where F is given
by (1.4). We will choose a starting point so that at least one of the equations in the system is satisfied,
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and the other is not too far off. This seems reasonable enough. Notice that with x = y = 1, xy − 1 = 0,

while x2 − 2xy − 4 = −1. Hence with x0 =

[
1
1

]
we have

F(x0) =

[
−1

0

]
.

Now let’s write our system in the form F (x, y) = 0. We can do this with

F (x) =

[
f(x, y)
g(x, y)

]
=

[
x2 + 2yx− 4

xy − 1

]
.

Computing the Jacobian, we find that

JF (x) =

[
2x+ 2y 2x

y x

]
, (1.10)

and hence

JF (x0) =

[
4 2
1 1

]
, (1.11)

Hence (1.9) is

x1 =

[
1
1

]
−
[

4 2
1 1

]−1 [−1
0

]
.

Since [
4 2
1 1

]−1

=
1

2

[
1 −2
−1 4

]
,

we find
x1 = [ 3/2, 1/2 ] .

Notice that x1 is indeed considerably closer to the exact solution
[√

2, 1/
√

2
]

than x0. Moreover,

F (x1) = −
1

4

[
1
1

]
.

This is a better approximate solution; it is much closer to the actual solution. If you now iterate this

further, you will find a sequence of approximate solutions converging to the exact solution (
√

2, 1/
√

2).

You should compute x2 and x3 and observe the speed of convergence.

1.2 Choosing a starting point for Newton’s method

With two variables, we can use what we know about generating plots of implicitly
defined curves to locate good starting points. In fact, we can use such plots to determine
the number of solutions. To do this, write F in the form

F(x, y) =
[
f(x, y)
g(x, y)

]
.

Each of the equations
f(x, y) = 0 and g(x, y) = 0
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is an implicit definition of a curve. Points where the two curves intersect are points
belonging to the solution set of both equations; i.e., to the solution set of F(x) = 0.

Example 2 (Using a graph to find a starting point for Newton’s iteration) Consider the system[
f(x, y)
g(x, y)

]
= 0 where f(x, y) = x3 + xy, and g(x, y) = 1− y2 − x2. This is non linear, but simple enough

that we can easily plot the curves. The equation g(x, y) = 0 is equivalent to x2 + y2 = 1, which is the
equation for the unit circle. Since f(x, y) = x(x2 + y), f(x, y) = 0 is and only if x = 0, which is the
equation of the y axis, or y = −x2, which is the equation of a parabola. Here is a graph showing the
intersection of the implicitly defined curves:

The axes have been left off since one branch of the second curve is the y axis. Since one curve is the
unit circle though, you can easily estimate the coordinates of the intersections anyway. As you see, there
are exactly 4 solutions. Two of them are clearly the exact solutions (0,±1). The other two are where the
parabola crosses the circle. Carefully measuring on the graph, you could determine (axes would now help)
that y ≈ −0.618 and x ≈ ±0.786. This would give us tow good approximate solutions. applying Newton’s
method, we could improve them to compute as many digits as we desire of the exact solution.

If you have more than two variables, graphs become harder to use. An alternative to drawing the graph

is to evaluate F(x) at all of the points in some grid, in some limited range of the variables. Use whichever

grid points give F(x) ≈= 0 as your starting points.

1.3 Geometric interpretation of Newton’s method

Newton’s method is based on the tangent plane approximation, and so it has a geometric
interpretation. This will help us to understand why it works when it does, and how we
can reliably stop it.

Here is how this goes for the system

f(x, y) = 0

g(x, y) = 0 .
(1.12)
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Replace this by the equivalent system

z = f(x, y)

z = g(x, y)

z = 0 .

(1.13)

From an algebraic standpoint, we have taken a step backwards – we have gone from two
equations in two variables to three equations in three variables. However, (1.13) has an
interesting geometric meaning: The graph of z = f(x, y) is a surface in IR3, as is the graph
of z = g(x, y). The graph of z = 0 is just the x, y plane – a third surface. Hence the
solution set of (1.13) is given by the intersection of 3 surfaces.

For example, here you a plot of the three surfaces in (1.13) when f(x, y) = x2 + 2xy− 4
and g(x, y) = xy−1, as in Example 1. Here, we have plotted 1.3 ≤ x ≤ 1.8 and 0.5 ≤ y ≤ 1,
which includes one exact solution of the system (1.12) in this case. The plane z = 0 is
the surface in solid color, z = f(x, y) shows the contour lines, and z = g(x, y) is the
surface showing a grid. You see where all three surfaces intersect, and that is the where
the solution lies.

You also see in this graph that the tangent plane approximation is pretty good in this
region, so replacing the surfaces by their tangent planes will not wreak havoc on the graph.
So here is what we do: Take any point (x0, y0) so that the three surface intersect near
(x0, y0, 0). Then replace the surfaces z = f(x, y) and z = g(x, y) by their tangent planes at
(x0, y0), and compute the intersection of the tangent planes with the plane z = 0. This is
a linear algebra problem, and hence is easily solved. Replacing z = f(x, y) and z = g(x, y)
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by the equations of their tangent planes at (x0, y0) amounts to the replacement

z = f(x, y) → z = f(x0) +∇f(x0) · (x− x0)

and
z = g(x, y) → z = g(x0) +∇g(x0) · (x− x0)

where x0 =
[
x0

y0

]
. This transforms (1.13) into

z = f(x0) +∇f(x0) · (x− x0)

z = g(x0) +∇g(x0) · (x− x0)

z = 0 .

(1.14)

Now we can eliminate z, and pass to the simplified system

f(x0) +∇f(x0) · (x− x0) = 0

g(x0) +∇g(x0) · (x− x0) = 0 .
(1.15)

Since JF(x0) =
[
∇f(x0)
∇g(x0)

]
, this is equivalent to (1.6) by the usual rules for matrix multi-

plication.
We see from this analysis that how close we come to an exact solution in one step of

Newton’s method depends on, among other things, how good the tangent plane approxima-
tion is at the current approximate solution. We know that tangent plane approximations
are good when the norm of the Hessian is not too large. We can also see that there will be
trouble if JF is not invertible, or even if it ∇f and ∇g are nearly proportional, in which
case (JF)−1 will have a large norm. There is a precise theorem, due the the 20th century
Russian mathematician Kantorovich that can be paraphrased as saying that if x0 is not
too far from an exact solution, ‖(JF)−1‖ is not too large, and each component of F has a
Hessian that is not too large, Newton’s method works and converges very fast. The precise
statement makes it clear what “not too large” means. We will neither sate it nor prove it
here – it is quite intricate, and in practice one simply uses the method as described above,
and stops the iteration when the answers stop changing in the digits that one is concerned
with.

1.4 More variables

We have explained everything so far in the case of two equations in two variables. But
is F is a functions from IRn to IRm, so that F(x) = 0 is a system of m equations in n
variables, the passage to the approximate linear system

F(x0) + JF(x0)(x− x0) = 0 . (1.16)
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by way of the linear approximation

F(x) ≈ F(x0) + JF(x0)(x− x0) . (1.17)

is just as valid. We may therefore recursively define the sequence {xn} by

JF(x0)(xn+1 − xn) = −F(x0) . (1.18)

Notice we do not write this in terms of the inverse of JF any longer – indeed, when m 6= n,
the Jacobian will not be square, and there will be no inverse. As long as there are more
variables than equations though, we can hope that the system in (1.18) is underdetermined,
and hence solvable. We can proceed as before.
Problems

1 Let F(x) =

[
f(x)
g(x)

]
where f(x, y) = x3 + xy, and g(x, y) = 1− 4y2 − x2. Let x0 =

[
1
0

]
.

a Compute JF(x) and JF(x0).

b Use x0 as a starting point for Newton’s method, and compute the next approximate solution x1.

c Evaluate F(x1), and compare this with F(x0).

d Draw graphs of the curves implicitly defined by f(x, y) = 0 and g(x, y) = 0. How many solutions are
there of this non linear system?

2 Let F(x) =

[
f(x)
g(x)

]
where f(x, y) =

√
x+
√
y − 3, and g(x, y) = x2 + 4y2 = 18.

a Compute F(x0) for x0 =

[
3
3

]
. does this look like a reasonable starting point? Compute JF(x0). What

happens if you try to use x0 as your starting point for Newton’s method?

b Draw graphs of the curves implicitly defined by f(x, y) = 0 and g(x, y) = 0. How many solutions are
there of this non linear system? Find starting points x0 near each of them with integer entries.

c Let x0 be the starting point that you found in part (b) that is closest to the x-axis. Compute the next
approximate solution x1.

d Evaluate F(x1), and compare this with F(x0).

3 Let F(x) =

[
f(x)
g(x)

]
where f(x, y) = sin(xy)− x, and g(x, y) = x2y − 1. Let x0 =

[
1
1

]
.

a Compute JF(x) and JF(x0).

b Use x0 as a starting point for Newton’s method, and compute the next approximate solution x1.

c Evaluate F(x1), and compare this with F(x0).

d How many solutions of this system are there in the region −2 ≤ x ≤ 2 and 0 ≤ y ≤ 10? Compute each
of them to 10 decimal places of accuracy – using a computer, of course.
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Section 2: Optimization problems

2.1 What is an optimization problem?

A optimization problem in n variables is one in which we are given a function f(x),
and a set D in IRn of admissible points, and we are asked to find either the maximum or
minimum value of f(x) as x ranges over D.

If D is a bounded and closed subset, and if f is continuous, then there is always point
x1 in D with the property that

f(x1) ≥ f(x) for all x in D , (2.1)

and there is always a point x0 in D with the property that

f(x0) ≤ f(x) for all x in D . (2.2)

The knowledge that such points exist, under these conditions, will play a basic role in our
reasoning.

Definition (Maximizer and minimizer) Any point x1 satisfying (2.1) is called a max-
imizer of f in D, and any point x0 satisfying (2.1) is called a minimizer of f in D. The
value of f at a maximizer is the maximum value of f in D, and the value of f at a minimizer
is the minimum value of f in D.

The regions D that we will be concerned with will be given by m constraints, which are
inequalities of the form

g1(x) ≤ 0

g1(x) ≤ 0

...
...

gm(x) ≤ 0

(2.3)

A point x belongs to if and only if D if it satisfies each of these inequalities.
Many sets can be expressed in this way. We will now give a series of examples in three

variables.

Example 1 (Constraint inequalities for the unit ball and sphere in IR3) Let

g1(x, y, z) = x2 + y2 + z2 − 1 .

The the closed unit ball in IR3 the set of points satisfying

g1(x) ≤ 0 .

Next, let D be the unit sphere in IR3; i.e., the set of all unit vectors in IR3. This is given by

g1(x) = 0 . (2.4)
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While this does not seem to fit the pattern in (2.3), because it is an equation, and not a system of
inequalities, we can take care of that. Let

g2(x) = −g1(x) . (2.5)

Then
g1(x) = 0 ⇐⇒ g1(x) ≤ 0 and g2(x) ≤ 0 .

Thus, (2.4) is equivalent to the system of inequalities

g1(x) ≤ 0

g2(x) ≤ 0
. (2.6)

As you can see from Example 1, we can include equality constraints in the framework
of (2.3). It is a pretty general framework for the specification of closed sets in IRn. Here
is another example.
Example 2 (More constraint specifications) Let D be the closed set of points in IR3 that lies above
the cone z = |x|/2 and inside the unit ball. Then D is given by

g1(x) ≤ 0

g2(x) ≤ 0
. (2.7)

where g1(x) = |x|2 − 4z2 and g2(x) = |x|2 − 1. note that we could have used |x| − 2z for g1(x), but it is

always easier to compute with squares of lengths of vectors, as we shall see.

When a set D is specified as in (2.3), and each of the functions g is continuous, the
interior of D is the set of all x for which

g1(x) < 0

g1(x) < 0

...
...

gm(x) < 0

. (2.8)

Notice that the difference with (2.3) lies in the fact that here all of the inequalities are
strict. By the continuity of the functions gj , if x is in the interior of D, then so is some
open neighborhood of points around x. (Of course, the interior can be the empty set, and
it is when D is the unit sphere.)

The boundary of D is the set of all points x satisfying the system of equations

g1(x) = 0

g1(x) = 0

...
...

gm(x) = 0

. (2.9)
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To solve an optimization problem is to find all maximizers and minimizers, if any, and
the corresponding maximum and minimum values. Our goal in this section is to explain a
strategy for doing this. We shall deal separately with the interior and the boundary.

The interior points are easy: If the gradient is nonzero, there is an “uphill direction”
and a downhill direction” moving away from x0, and staying in D. This is incompatible
with x0 being either a maximizer or a minimizer.

2.1 A strategy for solving optimization problems

Theorem 1 (Critical points and interior optimizers) Let D region in IRn, and
suppose that x0 is in the interior of D, and is either a minimizer or a maximizer. Then
x0 is a critical point of f .

The validity of this is probably quite clear. It is nonetheless worth going through a
proof that dots the i’s and crosses the t’s. Doing so will help you appreciate the content
of Theorem 2 from the previous section.

Proof: Let f be a function defined on IRn with continuous first order partial derivatives.
Suppose that x0 is in the interior of D, and ∇f(x0) 6= 0. Let v = ∇f(x0). Then the linear
approximation to f at x0 is

h(x) = f(x0) + v · (x− x0) . (2.10)

Since x0 is in the interior, we have some “wriggle room”, and there is an r > 0 so that

|t| < r ⇒ x0 + tv is in D .

Now, by adding and subtracting h,

f(x0 + tv) = h(x0 + tv) + [f(x0 + tv)− h(x0 + tv)] . (2.11)

Then by (2.10),
h(x0 + tv) = f(x0) + t|v|2 . (2.12)

If v 6= 0, then Theorem 2 of the previous section says that

lim
t→0

|f(x0 + tv)− h(x0 + tv)|
|t||v|

= 0 .

In particular, there is a t0 > 0 so that

|t| < t0 ⇒
|f(x0 + tv)− h(x0 + tv)|

|t||v|
≤ 1

2
|v| ,

which is the same as

|t| < t0 ⇒ |f(x0 + tv)− h(x0 + tv)| ≤ |t|
2
|v|2 . (2.13)
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Now combining (2.11), (2.12) and (2.13), we see that

0 < t < t0 ⇒ f(x0 + tv) ≥ f(x0) +
t

2
|v|2 (2.14)

and

−t0 < t < 0 ⇒ f(x0 + tv) ≤ f(x0)− t

2
|v|2 (2.15)

Therefore, for small positive values of t, f(x0+tv) > f(x0), so x0 cannot be a maximizer.
Also, for small negative values of t, f(x0+tv) < f(x0), so x0 cannot be a minimizer. Hence
condition ∇f(x0) 6= 0 is incompatible with x0 being an optimizer.

Now we come to the boundary points. If x0 is on the boundary of D, we cannot move
away from x0 in an arbitrary direction v, and still stay on the boundary: We are only
“allowed” to move in directions that do not change the values of any of the constraint
functions gj .

Here is the idea: Let x(t) be some parameterized path on the boundary of D that passes
through x0 at t = 0. Suppose that x′(0) = v. Then, by the chain rule, for each j,

d
dt
gj(x(t))

∣∣∣∣
t=0

= v · ∇gj(x0) .

But since the curve x(t) lies in the boundary of D, on which each gj is constant,

d
dt
gj(x(t))

∣∣∣∣
t=0

= 0 .

That is,
v · ∇gj(x0) = 0 . (2.16)

Direction vectors v satisfying (2.16) are called allowed direction vectors.
Now, if x0 is a maximizer or a minimizer for f on the boundary of D, then t = 0 is a

maximizer or a minimizer for the single variable function f(x(t)). Hence

0 =
d
dt
f(x(t))

∣∣∣∣
t=0

= v · ∇f(x0) .

The key fact on which this argument depends is this:

• Whenever v is an allowed direction at x0, there is a path x(t) lying in the boundary of
D such that x(0) = x0 and such that x′(0) = v

Previously, in two variables, we proved this using the Implicit Function Theorem. The
same ideas will again lead to the same conclusion. Let us accept this for the moment.
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We therefore conclude that whenever x0 is an optimizer for f on the boundary of D,{
v · ∇gj(x0) = 0 for all j

}
⇒ v · ∇f(x0) = 0 . (2.17)

Lemma The statement (2.17) is equivalent to the statement that ∇f(x0) is a linear com-
bination of the vectors ∇gj(x0); i.e., that there exist numbers λ1, . . . , λm so that

∇f(x0) = λ1∇g1(x0) + λ2∇g2(x0) + · · ·+ λm∇gm(x0) . (2.18)

Proof: Let S be the subspace of IRn spanned by {∇g1(x0), . . . ,∇gm(x0)}, and let
{u1, . . . ,uk} be an orthonormal basis of S⊥. Then

{∇g1(x0), . . . ,∇gm(x0)} ∪ {u1, . . . ,uk}

spans IRn. In particular, there exist numbers λ1, . . . , λm and µ1, . . . , µk so that

∇f(x0) =
m∑

i=1

λi∇gi(x0) +
k∑

j=1

µjuj . (2.19)

Now, since {u1, . . . ,uk} is an orthonormal basis of S⊥, and since each ∇gi(x0) lies in S,
for each i and j

uj · ∇gi(x0) = 0 . (2.20)

In particular, each of the uj are allowed directions. Therefore, uj · ∇f(x0) = 0 for each j.
But by (2.19), (2.20) and the fact that {u1, . . . ,uk} is an orthonormal set of vectors,

uj · ∇f(x0) = µj .

Therefore µj = 0 for each j, and thus (2.19) reduces to (2.18)

Now we have the following result:

Theorem 2 (Lagrange multipliers and boundary optimizers) Let D region in IRn

and suppose that x0 is on the boundary of D, and is either a minimizers or a maximizer.
Suppose that the boundary of D is specified by a system of equation of the form (2.9). Then
there exist numbers λ1, . . . , λm so that

∇f(x0) =
m∑

i=1

λi∇gi(x0). (2.21)
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Notice that the vector equation (2.21) is a system of n equations in n + m unknowns,
namely x1, . . . , xn and λ1, . . . , λm. However, we also have the m constraint equations (2.9),
so altogether, we have n+m equations for n+m unknowns. Solving this system provides
us with all possible “suspects” for maximizers and minimizers on the boundary.

We note that usually the set D defined by (2.9) is only interesting when m < n. Indeed,
if m = n, then (2.9) provides n equations for n variables, the x1, . . . , xn, and so in this
case, D likely to consist of a finite set of points. One takes this whole set D as the “list
of suspects”, and plugs them into f to see which ones give the minimum and maximum
values. If m > n, the system (2.9) is likely to be overdetermined, and D may then be
empty.

In particular, when n = 2, we are only interested in the case of one constraint equation
g(x) = 0, and then (2.21) reduces to

∇f(x) = λ∇g(x)

for some λ. But in this case, the columns of [∇f(x),∇g(x)] are linearly dependent, and
we can check for this by solving

det([∇f(x),∇g(x)]) = 0 ,

as we usually did in the previous chapter.
We now give a large number of examples in three and four variables. Our first example

will show how minimization problems in 4 or more variables can easily arise when con-
sidering geometric questions in IR2 or IR3. The example concerns the problem of finding
the distance between two curves in the plane. Suppose that these are given implicitly by
g1(x) = 0 and g2(x) = 0.

• We seek to find points x1 and x2 satisfying g1(x1) = 0 and g2(x2) = 0 with |x1 − x2| as
small as possible.

Here is a natural way to solve this problem: Let (x, y) and (u, v) denote the coordinates
of x1 and x2 respectively. Define

f(x, y, u, v) = (x− u)2 + (y − v)2

so that f is the square of the distance between x1 and x2. Our problem now is to minimize
f , subject to the constraints

g1(x, y) = 0

g2(u, v) = 0

Thus, the problem fits exactly into the framework that we have been discussing in this
section.

Now, if one of the curves is a line, there is an alternate approach leading to a problem
with two variables and one constraint: A type of problem that we learned to solve in the
previous chapter. The reason is that we have a formula for the distance form a point (x, y)
to a line. We can then minimize this distance over the second curve.
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For example, suppose the line is given by x + 2y = 4. Then x0 = [ 0, 2 ] is a point on

the line , and the normal vector to the line is a =
[

1
2

]
. Then the distance from x to the

line is
1√
5

∣∣∣∣[ x
y − 2

]
·
[

1
2

]∣∣∣∣ =
|x+ 2− 4|√

5
.

If the second curve is the ellipse 2x2 + y2 = 2, we can then minimize

f(x, y) = (x+ 2y − 4)2/5

subject to the constraint

g(x, y) = 0 where g(x, y) = 2x2 + y2 − 2 .

Here is a graph showing the ellipse and and the line in black, with a few level curves
of the distances function drawn in more lightly. These are of course lines parallel to the
original line, and we have drawn than in for the levels that make them tangent to the
ellipse. Evidently, the point of tangency in the upper right of the graph is the points on
the ellipse that is closest to the line.

We now explain how to solve this problem without using the formula for the distance
between a point and a line. This is almost as simple, and the approach also works when
we replace the line by something more complicated, as we shall see in the next example.
First, let us start with something relatively simple.
Example 3 (The distance between an ellipse and a line) We have already seen how to compute
the distance between a point and a curve, but what about the distance between two curves?
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To begin with a simple case, let us consider a line and an ellipse. Let the line be given by

x+ 2y = 4

and the ellipse be given by
2x2 + y2 = 2 .

Let (x, y) denote any point on the line, and let (u, v) denote any point on the ellipse. We seek to
minimize

f(x, y, u, v) = (x− u)2 + (y − v)2 ,

which is the square of the distance between (x, y) and (u, v) as (x, y) ranges over the line, and (u, v) ranges
over the ellipse.

If we define

g1(x, y, u, v) = x+ 2y = 4 and g2(x, y, u, v) = 2u2 + v2 − 2 ,

then the system
g1(x, y, u, v) = 0

g2(x, y, u, v) = 0

expresses the constraint that (x, y) is to lie on the line, and (u, v) on the ellipse.
It is geometrically clear that a minimum exists, but no maximum – there are points on the line that

are arbitrarily far away from the ellipse.
To apply Theorem 2, we now compute

∇f = 2

x− uy − v
u− x
v − y

 ∇g1 =

 1
2
0
0

 and ∇g2 =

 0
0

4u
2v

 .

Then according to Theorem 2, there exist numbers λ1 and λ2 such thatx− uy − v
u− x
v − y

 = λ1

 1
2
0
0

+ λ2

 0
0

4u
2v

 . (2.22)

Considering the first two entries, and then the last two, we see that[
x− u
y − v

]
= λ1

[
1
2

]
and

[
x− u
y − v

]
= −λ2

[
4u
2v

]
. (2.23)

Notice that the vector

[
x− u
y − v

]
is not zero when (x, y) is on the line, and (u, v) is on the ellipse, since the

line and the ellipse do not intersect. Therefore, neither λ1 nor λ2 is zero. Hence, the three vectors[
x− u
y − v

]
,

[
1
2

]
and

[
4u
2v

]
. (2.24)

are all non zero and proportional.
From this we conclude that

x− u
y − v

=
1

2
=

2u

v
. (2.25)

The second equation in (2.25) says that
v = 4u , (2.26)
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Substituting this into the constraint equation g2 = 0, we get 18u2 = 2. The is means the u = ±1/3,
and then from (2.26), we find the two solutions

(u, v) = (1/3, 4/3) and (u, v) = (−1/3,−4/3) . (2.27)

The first equation in (2.25) can be written as 2(x − u) = y − v) ,or 2x − y = 2u − v. Combining this
with the constraint equation g1 = 0, we have the system

2x− y = 2u− v
x+ 2y = 4 .

(2.28)

For (u, v) = (1/3, 4/3), (2.28) becomes

2x− y = −2/3

x+ 2y = 4 .

One easily solves this system for x and y, finding x = 8/15 and y = 26/15.
For (u, v) = (−1/3,−4/3), (2.28) becomes

2x− y = 2/3

x+ 2y = 4 .

One easily solves this system for x and y, finding x = 16/15 and y = 22/15.
Thus, we have found two solutions of our system of equations

1

15

 8
26
5
20

 and
1

15

 16
22
−5
−20

 .

Evaluating f at these two points, we get 1/5 and 49/5 respectively. Evidently the distance between

the line and the ellipse is 1/
√

5.

To check our work graphically, note that our computation say that the points of tangency in the graph

we drew right before this example should be given by (2.27). As you can see, this is what is shown in the

graph.

There is an important general conclusion that can be drawn from our analysis in Ex-
ample 3: Suppose that we have two curves given implicitly by g1 = 0 and g2 = 0. Suppose
that the two curves do not intersect. (If they do, the distance between them is zero). Then
that analysis leading from (2.22) to (2.24) leads to the conclusion that the three vectors

[
x− u
y − v

]
, ∇g1(x, y) and ∇g2(u, v) . (2.29)

are all non zero and proportional.
From this, we can extract a pair of equations, which, together with the two constraint

equations, g1 = 0 and g2 = 0, give us four equations in four unknowns. Solving for these
gives us our “list of suspects”.

In the next example, we apply this find the distance between two ellipses.
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Example 4 (The distance between two ellipses) Let g1 and g2 be given by

g1(x, y) = 2(x+ 2)2 + (y − 2)2 − 2 and g2(u, v) = u2 + 2v2 − 2 .

Here is a graph showing these two ellipses, which do not intersect:

We next compute

∇g1(x, y) =

[
4x+ 8
2y − 4

]
and ∇g2(u, v) =

[
2u
4v

]
.

Hence from (2.29) we conclude that

det

([
x− u 2x− 4
y − v y − 2

])
= 0 and det

([
x− u 2u
y − v v

])
= 0 .

That is,
(x− u)(y − 2)− (2x− 4)(y − v) = 0 and (x− u)v − (y − v)2u = 0 .

Together with the constraint equations, we now have the system

(x− u)(y − 2)− (2x− 4)(y − v) = 0

(x− u)v − (y − v)2u = 0

2(x+ 2)2 + (y − 2)2 − 2 = 0

u2 + 2v2 = 0

This is a system of quadratic equations, and so it can be solved explicitly. A more efficient way to learn
the answer, to as many decimal places as we desire, is to apply Newton’s method.

Let X denote the vector in IR4 given by X =

 xy
u
v

. Define the vector function F(X) by

F(X) =

 (x− u)(y − 2)− (2x− 4)(y − v)
(x− u)v − (y − v)2u

2(x+ 2)2 + (y − 2)2 − 2
u2 + 2v2

 .
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Then we need to solve (X) = 0.
To choose a starting point. consider the graph that we drew at the beginning. It looks like the point

(1 , 1/
√

2) on the lower ellipse is not too far of from being closest to the upper ellipse. It also looks like

the point (2− 1/
√

2 , 1) on the upper ellipse is not too far of from being closest to the lower ellipse.

So we take X0 =

 2− 1/
√

2
1
−1

1/
√

2

 as our starting point. It is now easy to use a computer to evaluate the

successive terms generated by
Xn+1 = Xn − [JF(Xn)]−1F(Xn) .

Doing the computation with 10 digits, we find that all but the last digits stop changing with 6 iterations,
and

X6 =

 −1.422649732
0.8452994614
−1.154700539
0.5773502687

 .

Evaluating f at this point, we find f(X6) = 0.1435935399, and the distance is the square root of this;
i.e., 0.378937382... accurate to the digits shown.

The method that we have used in the Example 4 may be used to compute the distance
between all sorts of curves. Since we rely on Newton’s method to solve the system that we
get, we do not have to worry about the algebraic complexity of the equations we get from
(2.29).

In the next example, we will consider two constraints in three variables. Then Theorem
2 gives us

∇f(x) = λ∇g1(x) + µ∇g2(x) (2.30)

for some numbers λ and µ.
Here is a good way to eliminate λ and µ right at the beginning: Since (2.30) says that

{∇f(x),∇g1(x),∇g2(x)} is linearly dependent,

det

 ∇f(x)
∇g1(x)
∇g2(x)

 = 0 . (2.31)

This equation, together with g1(x, y, z) = 0 and g2(x, y, z) = 0 gives us three equations in
three variables, which is what we want.

Example 5 (Finding minima and maxima in three variables with two constraints) As above,
consider the problem of maximizing f(x, y, z) = xyz subject to the constraints

g1(x, y, z) = 0

g2(x, y, z) = 0

where
g1(x, y, z) = x2 + y2 + z2 − 1 and g2(x, y, z) = x+ y + z − 1 .

Then [ ∇f(x)
∇g1(x)
∇g2(x)

]
=

[
yz xz xy
2x 2y 2z
1 1 1

]
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so that (2.31) reduces to

x2(y − z) + y2(z − x) + z2(x− y) = 0 .

If you go through the algebra carefully – this takes some doing – you will find 6 solutions:

(1, 0, 0) (0, 1, 0) (0, 0, 1)

and
(2/3, 2/3,−1/3) (2/3,−1/3, 2/3) (−1/3, 2/3, 2/3) .

At each of the first 3 points f = 0, at each of the remaining 3 points f = −4/9. Hence the maximum

value of f subject to these constraints is 0, and the minimum value is −4/9.

In our next example, we will deal with one constraint in three variables. Then Theorem
2 gives us the equation

∇f(x) = λ∇g(x) . (2.32)

We can once again eliminate λ from the outset. The observation to make is that one vector
is a multiple of another if and only if their cross product is zero, Thus, (2.32) is equivalent
to

∇f(x0)×∇g(x0) = 0 .

Example 6 (Finding minima and maxima in three variables with one constraints) As above,
consider the problem of maximizing f(x, y, z) = xyz subject to the constraint g(x, y, z) = 0 where

g(x, y, z) = x2 + y2 + z2 − 1 .

Then

∇f(x)×∇g(x) =

[
x(z2 − y2)
y(x2 − z2)
z(y2 − x2)

]
.

Setting this equal to zero would at first seem to give us three equations, but only two of them are
independent. Keeping the first two together with the constraint equation gives us the system

x(z2 − y2) = 0

y(x2 − z2) = 0

x2 + y2 + z2 = 1 .

The first equation says x = 0 or z2 = y2. If x = 0, the second equation says yz2 = 0, so then either y = 0
or z = 0. If x = y = 0, the third equation says x = ±1. Hence if x = 0, we have the solutions (0, 0, 1) and
(0, 1, 0). Otherwise if zy = y2. If y = 0, we get the solution (1, 0, 0). Otherwise, if y 6= 0, we get from the
second equation that x2 = z2 too, so

x2 = y2 = z2 .

Now the third equation says that the common value is 1/3. Hence we have the nine solutions

(1, 0, 0) (0, 1, 0) (0, 0, 1)

and
(±1/

√
3,±1/

√
3,±1/

√
3) .

From this list we see that the minimum value of f on the unit sphere is −3−3/2, and the maximum value

is 3−3/2.
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Exercises

1 Consider the two ellipses given by x2 + 4y2 + 3y = 8 and (x− 5)2 + 2(y + 8)2 = 2.

(a) Set up a system of 4 equations in 4 variables for determining the pair of closest points on the two
ellipses.

(b) Draw a graph of the two ellipses, and determine a close approximation to the pair of closest points.

(c) Use Newton’s method to determine the distance between the two ellipses to at least 6 digits of accuracy.

2 Consider the hyperbola and the ellipse given by x2 − y2 = 8 and x2 + 2(y + 8)2 = 2.

(a) Set up a system of 4 equations in 4 variables for determining the pair of closest points on the two
curves.

(b) Draw a graph of the two ellipses, and determine a close approximation to the pair of closest points.

(c) Use Newton’s method to determine the distance between the two curves to at least 6 digits of accuracy.

3 For any positive numbers a, b and c, the volume of the ellipsoid given

x2

a2
+
y2

b2
+
z2

c2
≤ 1

is (4/3)πabc.
Find the maximum value of this volume, subject to the condition that the point (1, 2, 3) lies on the

boundary of the ellipsoid.

4 For any positive numbers a, b and c, the volume of the ellipsoid given

x2

a2
+
y2

b2
+
z2

c2
≤ 1

is (4/3)πabc.
Find the maximum value of this volume, subject to the condition that the point (1, 2,−1) lies on the

boundary of the ellipsoid.

5 The arithmetic–geometric mean inequality states that for any n non negative numbers x1, . . . , xn,

(x1x2 · · ·xn)1/n ≤
x1 + x2 + · · ·xn

n

with equality if and only if x1 = x2 = · · · = xn. Prove this by determining the maximum value of

f(x1, x2, · · · , xn) = x1x2 · · ·xn

over the region D given by
x1 + x2 + · · ·xn = n

and
xj ≥ 0 for all j .

6 Let D be the region consisting of all points (x, y) satisfying

x2 + y2 + (z − 1)2 ≤ 2 and x2 + y2 + (z + 1)2 ≤ 2 .

Let f(x, y) = 2x+ 3y− z. Find the minimum and maximum values of f on D, and find all minimizers and
maximizers. Use Newton’s method to solve the equations determining these to at least 6 digits of accuracy
if the algebra becomes difficult.

7 Let D be the region consisting of all points (x, y) satisfying

x4 + y4 + z4 = 1 and x2 + y2 + xy − z = 0 .

Let f(x, y) = x+ 2y− 3z. Find the minimum and maximum values of f on D, and find all minimizers and
maximizers. Use Newton’s method to solve the equations determining these to at least 6 digits of accuracy
if the algebra becomes difficult.
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