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Section 1: Curves in IRn

1.1 Functions from IR to IRn

Consider a function x(t) of the real variable t with values in IRn. For example, let us
consider n = 3, and

x(t) =

 cos(t)
sin(t)
1/t

 . (1.1)

Here is a three dimensional plot of the curve traced out by x(t) as t varies from t = 1 to
t = 20:
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Such vector valued functions arise whenever we describe the position of a point particle
as a function of time. But more generally, we might have any sort of system that is
described by n parameters. These could be, for example, the voltages across n points in
an electric circuit. We can arrange this data into a vector, and if the data is varying with
time, as is often the case in applications, we then have a time dependent vector x(t) in
IRn.

When quantities are varying in time, it is often useful to consider their rates of change;
i.e., derivatives.

Definition (Derivatives of Vector Valued Functions) Let x(t) be a vector valued
function of the variable t. We say that x(t) is differentiable at t = t0 with derivative x′(t0)
in case

lim
h→0

1
h

(x(t0 + h)− x(t0)) = x′(t0)

in the sense that this limit exists for each of the n entries separately. A vector valued
function is differentiable in some interval (a, b) if it is differentiable for each t0 in (a, b).

There is nothing really new going on here. To compute the derivative of x(t), you just
differentiate it entry by entry in the usual way.
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Indeed, consider a t dependent vector x(t) =
[
x(t)
y(t)

]
in IR2. Then, by the rules for

vector subtraction and scalar multiplication,

1
h

(x(t+ h)− x(t)) =
1
h

([
x(t+ h)
y(t+ h)

]
−
[
x(t)
y(t)

])
=
[

(x(t+ h)− x(t))/h
(y(t+ h)− y(t))/h

]

Now taking the limits on the right, entry by entry, we see that x′(t) =
[
x′(t)
y′(t)

]
provided

x(t) and y(t) are both differentiable. The same reduction to single variable differentiation
clearly extends to any number of entries.
Example 1 (Computing the derivative of a vector valued function of t) Let x(t) be given by
(1.1). Then for any t 6= 0,

x′(t) =

[− sin(t)
cos(t)
−1/t2

]
.

Because we just differentiate vectors entry by entry without mixing the entries up in any
way, familiar rules for differentiating numerically valued functions hold for vector valued
functions as well. In particular, the derivative of a sum is still the sum of the derivatives,
etc.:

(x(t) + y(t))′ = x′(t) + y′(t) (1.2).

Things are only slightly more complicated with the product rule because now we have
several types of products to consider. Here is an example that we shall need soon: a
“product rule” for the dot product.

Theorem 1 (Differentiating Dot Products) Suppose that v(t) and w(t) are differ-
entiable vector valued functions for t in (a, b) with values in IRn. Then v(t) · w(t) is
differentiable for t in (a, b), and

d
dt

v(t) ·w(t) = v′(t) ·w(t) + v(t) ·w′(t) . (1.3)

Proof: For each i, we have by the usual product rule

d
dt
vi(t)wi(t) = v′i(t)wi(t) + vi(t)w′i(t) .

Summing on i now gives us (1.3).

There are a number of other product rules. For example if f(t) is a differentiable
function from IR to IR, and x(t) is a differentiable curve in IRn, then z(t) = f(t)x(t) is
another differentiable curve in IRn, and

(f(t)x(t))′ = f ′(t)x(t) + f(t)x′(t) .
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This may be established by applying the usual product rule in each coordinate. The details
are left as an exercise.

1.2 Differentiability and the tangent line approximation

In the previous subsection, we gave a very simple and direct definition of differentiability
for a vector valued function x(t): It was simple and direct because it made full use of our
understanding of derivatives of functions from IR to IR.

There is another way to look at derivatives of vector values functions x(t) that is more
geometric, and which often provides useful insight: A curve x(t) is differentiable at t = t0
if and only if looks like linear motion

x(t0) + (t− t0)v

for some vector v, when t is very close to t0.
That is, when you “zoom in” on a graph of the curve, so that all you see in your graph

is a small segment on which |t− t0| is small, this segment looks like a straight line segment,
traversed at constant speed. This line is called the tangent line to the curve at x(t0).

Here is a graph of a differentiable curve and its tangent line at a particular point:

You can see from the picture that if you “zoomed in” further, the tangent line and the
curve itself could not be distinguished in the graph.

That is, whenever |t − t0| is small enough, but still positive, the distance between the
curve x(t) and the line x(t0) + (t − t0)v is so much smaller that it does not amount to
even one pixel in our “zoomed in” graph.

The width and height of the graph are proportional to |t− t0|, since for |t− t0| ≤ r the
length of the line segment x(t0)+(t−t0)v is 2|v|r. If for |t−t0| < r , |x(t)−[x(t0)+(t−t0)v]|
is a sufficiently small percentage* of 2|v|r, and hence of the screen width and height, it
will not show up as even one pixel.

•That is, the curve and the line are indistinguishable when

|x(t)− [x(t0) + (t− t0)v]|
|t− t0|

≈ 0 for |t− t0| ≈ 0 .

* This is the key: It has not only to be small, but a small percentage of the already small width and

height of the graph.
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We now show that the curve is indistinguishable from a line – the tangent line – in this
sense if and only if it is differentiable.

Theorem 2 (Differentiability and the tangent line) Let x(t) be a function with
values in IRn that is defined on some open interval (a, b) with a < t0 < b. Then x(t) is
differentiable at t = t0 is and only if there is a vector v in IRn such that

lim
t→0

|x(t)− [x(t0) + (t− t0)v]|
|t− t0|

= 0 . (1.4)

In this case, v = x′(t0).

Proof: Suppose that (1.4) is true. Let xj(t) denote the jth component of x(t) and let vj
denote the jth component of v. Then

(xj(t)− [xj(t0) + (t− t0)vj ]) = (x(t)− [x(t0) + (t− t0)v]) · ej

so that by the Schwarz inequality, and the fact that |ej | = 1,

|xj(t)− [xj(t0) + (t− t0)vj ]| ≤ |x(t)− [x(t0) + (t− t0)v]| .

It now follows from (1.4) that

lim
t→0

|xj(t)− [xj(t0) + (t− t0)vj ]|
|t− t0|

= 0 . (1.5)

Now let h denote t− t0. Then∣∣∣∣xj(t0 + h)− xj(t0)
h

− vj
∣∣∣∣ =
|xj(t)− [xj(t0) + (t− t0)vj ]|

|t− t0|
.

It follows that (1.5) is true if and only if for each j,

lim
h→0

xj(t0 + h)− xj(t0)
h

= vj .

In this case, for each j, xj(t) is differentiable, and

vj = x′j(t0) .

This shows that if (1.4) is true, then x(t) is differentiable, and v = x′(t0).
Conversely, suppose that x(t) is differentiable, and v = x′(t0). Then by the definition

of differentiability, (1.5) is true for each j. We have to show that this means that (1.4) is
true.
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For this purpose, we use the following inequality: For any vector y =


y1
y2
...
yn

 in IRn,

|y| ≤
n∑
j=1

|yj | . (1.6)

Let us accept the validity of (1.6) for the moment, and proceed with the question at hand.
(we will prove this in Lemma 1 below.)

By (1.6),

|x(t)− [x(t0) + (t− t0)v]| ≤
n∑
j=1

|xj(t)− [xj(t0) + (t− t0)vj ]| .

Then of course

|x(t)− [x(t0) + (t− t0)v]|
|t− t0|

≤
n∑
j=1

|xj(t)− [xj(t0) + (t− t0)vj ]|
|t− t0|

.

Now (1.4) follows from (1.5).

We now prove the lemma that grants us the use of (1.6). We single this out s a separate
lemma as it will be useful many times in the future. Roughly speaking, what (1.6) tells us
is pretty clear: If each entry of a vector y is small, then |y| is small. The inequality (1.6)
is just a precise quantitative expression of this fact.

Lemma 1 For any vector y =


y1
y2
...
yn

 in IRn, |y| ≤
n∑
j=1

|yj |.

Proof Define C by
C = max{|yj | : j = 1, . . . , n } .

Then

|y|2 =
n∑
j=1

|yj |2 ≤
n∑
j=1

C|yj | = C

 n∑
j=1

|yj |

 .

But the maximum of n non negative quantities is no greater than their sum, so

C ≤
n∑
j=1

|yj | .
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Combining the last two inequalities gives us |y|2 ≤
(∑n

j=1 |yj |
)2

and hence (1.6).

Theorem 2 motivates the following definition:

Definition Suppose that x(t) is a function with values in IRn that is defined on some
open interval (a, b) with a < t0 < b, and x(t) is differentiable at t = t0.

Then, with v = x′(t0), the approximation

x(t) ≈ x(t0) + (t− t0)v(t0)

is called the tangent line approximation, and the parameterized line on the right hand side
is called the tangent line to x(t) at t0. The vector v(t0) is called the velocity vector at
t = t0.

Example 2 (The tangent line approximation) Let x(t) be given by x(t) =

[
t

23/2t3/2/3
t2/2

]
. Then for

all t > 0,

x′(t) =

[
1

(2t)1/2

t

]
and x′′(t) =

[
0

(2t)−1/2

1

]
.

Taking t0 = 1,

x(1) =

[
1

23/2/3
1/2

]
x′(1) =

[
1

21/2

1

]
and x′′(1) =

[
0

2−1/2

1

]
.

Therefore, when t ≈ 1, x(t) ≈
[

1
23/2/3

1/2

]
+ (t− 1)

[
1

21/2

1

]
+

(t− 1)2

2

[
0

2−1/2

1

]
.

We get the tangent line by just keeping the linear term in this approximation. Hence the tangent line
at t = 1 is given in parametric form by

z(t) =

[
1

23/2/3
1/2

]
+ (t− 1)

[
1

21/2

1

]
.

Here is a plot showing the curve for 0 ≤ t ≤ 2, together with the tangent line at t = 1.
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Observe the tangency. (In this example we have computed the tangent line that we have graphed
earlier.) As you can see in the graph, the tangent line fits quite well at t = t0, as it should.

The velocity is a vector quantity, with both magnitude and direction.

Definition The magnitude of the velocity vector is called the speed. We denote it by v(t).
That is,

v(t) = |v(t)| .

Provided that v(t) 6= 0, we can define a unit vector valued function T(t) by

T(t) =
1
v(t)

v(t) . (1.7)

Then clearly
v(t) = v(t)T(t) . (1.8)

The vector T(t) is called the unit tangent vector at time t.

This factorization of the velocity vector into a unit vector giving the direction of motion,
and a scalar multiple giving the speed of motion in that direction provides a very good
way to think about the motion of point particles, as we shall explain.

Example 3 (Speed and the unit tangent vector) Let x(t) be given by x(t) =

[
t

(2t)3/2/3
t2/2

]
as in the

previous example. Then, as we have seen, for all t > 0, x′(t) =

[
1

(2t)1/2

t

]
. We then easily compute that

v(t) =
√

1 + 2t+ t2 = 1 + t ,

and so

T(t) =
1

1 + t

[
1

(2t)1/2

t

]
.

1.3 Acceleration

Given a differentiable curve x(t) in IRn, we can differentiate, and get another curve in
IRn, namely v(t) where v(t) = x′(t).

We can now try to differentiate v(t). This involves a second derivative, which is just
what you get when you differentiate twice. That is,

x′′(t) = v′(t) .

The derivative of the velocity is called the acceleration. The vector valued function x(t)
is twice differentiable in case each of its entries is twice differentiable in the single variable
sense. We usually denote the acceleration by a(t). That is,

a(t) = v′(t) = x′′(t) .
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Like the velocity, the acceleration is also a vector quantity, with both magnitude and
direction. However, we shall find it useful to decompose the acceleration into components
that are parallel and perpendicular to the velocity.

Here is one reason: Since v2(t) = v(t) · v(t), we have from Theorem 1 that

d
dt
v2(t) = a(t) · v(t) + v(t) · a(t) = 2a(t) · v(t) .

On the other hand, by the product rule,
d
dt
v2(t) = 2v(t)v′(t), and hence

2v(t)v′(t) = 2a(t) · v(t) . (1.9)

Hence, if v′(t) = 0 if and only if a(t) is orthogonal to v(t). Assuming that v(t) 6= 0, we
can cancel 2v(t) from both sides to obtain

v′(t) = a(t) ·T(t) . (1.10)

Notice that the speed can be constant without the velocity being constant. This is what
happens in steady circular motion. The direction of the velocity keeps changing though
the speed is constant.
Example 4 (Steady circular motion) Let x(t) be given by

x(t) = r

[
cos(t)
sin(t)

]
for some r > 0. Then,

v(t) = r

[
− sin(t)

cos(t)

]
and a(t) = r

[
− cos(t)
− sin(t)

]
.

Then v(t) = |v(t)| = r, and T(t) = (1/v(t))v(t) =

[
− sin(t)

cos(t)

]
.

Also, as you see, the velocity is constantly changing although the speed is constant: v(t) = r for all t.
Also, as you can compute,

a(t) · v(t) = 0

for all t.

We can gain more insight into the nature of acceleration by considering circular motion
at a variable rate:
Example 5 (Circular motion at a variable rate) Let x(t) be given by

x(t) = r

[
cos(θ(t))
sin(θ(t))

]
for some r > 0, and some function θ(t) giving the angular coordinate of the point at time t. Let us suppose
that θ(t) is twice differentiable. Then,

v(t) = rθ′(t)

[
− sin(θ(t))

cos(θ(t))

]
and a(t) = rθ′′(t)

[
− sin(θ(t))

cos(θ(t))

]
+ r(θ′(t))2

[
− cos(θ(t))
− sin(θ(t))

]
.

1-9



Then

v(t) = |v(t)| = rθ′(t) and T(t) =
1

v(t)
v(t) =

[
− sin(θ(t))

cos(θ(t))

]
.

As you see, v′(t) = (rθ′(t)) = rθ′′(t), and that r(θ′(t))2 = v2(t)/r. Therefore, we can rewrite the
acceleration vector as

a(t) = v′(t)T(t) +
v2(t)

r
N(t) (1.11)

where N(t) denotes the unit vector

N(t) =

[
− cos(θ(t))
− sin(θ(t))

]
.

Notice that T(t) · N(t) = 0 for all t, so that (1.11) gives a decomposition of the acceleration into two

orthogonal components: v′(t)T(t) is the component parallel to the direction of motion, and
v2(t)

r
N(t) is

the component perpendicular to the direction of motion.

Notice that v′(t), the rate of change of the speed, only enters into the first component
in (1.11). If you are driving a car around a circular track, and step on the gas, or on the
brakes, you will feel an acceleration in the direction of motion, pushing you back in your
seat, or up against the seatbelt. That is the tangential component of the acceleration.

On the other hand, even if you keep your speed constant, you will still feel an acceler-
ation due to your constant turning. You will experience this acceleration as a so–called
“centrifugal force”, pushing you away from the center of the track. This higher your speed,
and the smaller the radius of the track, the greater this acceleration will be. Notice that
this agrees with the formula above, according to which the magnitude of the orthogonal
component of the acceleration is v2(t)/r.

This decomposition is useful even when the track is not circular. This leads us to the
following definitions:
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Definition (Normal and tangential acceleration, normal vector, and curvature)
Let x(t) be a twice differentiable parameterized curve in IRn. Let

a(t) = a‖(t) + a⊥(t)

be the decomposition of the acceleration into its components parallel and orthogonal to
v(t), assuming that v(t) 6= 0, so that this decomposition is well defined. Then a‖(t) is
called the tangential acceleration, and a⊥(t) is called the normal acceleration.

Furthermore, in case a⊥(t) 6= 0, we define the unit normal vector N(t) by

N(t) =
1

|a⊥(t)|
a⊥(t) . (1.12)

Finally, we define the curvature at time t, κ(t), by

κ(t) =
|a⊥(t)|
v2(t)

(1.13) ,

and the radius of curvature at time t by

ρ(t) =
1
κ(t)

(1.14) ,

It is important to notice that N(t) points in the same direction as T′(t), the derivative
of T(t). Thus, it points in the direction in which the curve is turning. To see this, let us
notice first of all that T′(t) is orthogonal to T(t): Since T(t) is a unit vector,

T(t) ·T(t) = 1 .

Therefore, by Theorem 1,

0 =
d
dt

1 = 2T(t) ·T′(t) .

To go on and show that T′(t) actually points in the same direction as N(t), we compute
the acceleration using v(t) = v(t)T(t). Then

a(t) = (v(t)T(t))′ = v′(t)T(t) + v(t)T′(t) . (1.15)

Notice that the first term on the right is a multiple of T(t), and the second term on the right
is orthogonal to T(t) by what we have just seen. Therefore, (1.15) is the decomposition of
the acceleration into its tangential and orthogonal components. That is,

(a(t))‖ = v′(t)T(t) and (a(t))⊥ = v(t)T′(t) . (1.16)
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But by (1.12) and (1.13),

(a(t))⊥ = v2(t)κ(t)N(t) . (1.17)

Comparing (1.15), (1.16) and (1.17), we deduce two useful formulas, that deserve to be
enshrined in a theorem:

Theorem 3 Let x(t) be a twice diffeentiable curve in IRn. Then

a(t) = v′(t)T(t) + v2(t)κ(t)N(t) , (1.18)

and
T′(t) = v(t)κ(t)N(t) . (1.19)

Proof: simply compare (1.15), (1.16) and (1.17).

The formula (1.18) should be compared with (1.11). This comparison explains the
justification for referring to ρ(t) = 1/κ(t) as the “radius of curvature” of time t.

In IR2, there are just two directions perpendicular to T, namely T⊥ and −T⊥. Since N
is perpendicular to T, either N = T⊥ or else N = −T⊥. Which it is depends on whether
the turning is clockwise or counterclockwise. The formula (1.19) shows that N(t) points
in the same direction as T′(t): i.e., N points in the “direction of turning”. If, as you
drive along a track, you are turning left, then N = T⊥, and if you are turning right, then
N = −T⊥.

Example 6 (Computing the normal and tangential acceleration) Let x(t) =

[
t

(2t)3/2/3
t2/2

]
as

before. Then for all t > 0, as we have computed before v(t) = 1 + t so that v′(t) = 1. We have computed
in Example 3 that

v(t) = 1 + t and T(t) =
1

1 + t

[
1

(2t)1/2

t

]
.
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Therefore, v′(t) = 1, and so a‖(t) = T(t). Thus,

a‖(t) =
1

1 + t

[
1

(2t)1/2

t

]
.

This is the tangential component of the acceleration. The normal component must be a(t) minus this.
Since we have computed in Example 1 that

a(t) = x′′(t) =

[
0

(2t)−1/2

1

]
,

the normal component is[
0

(2t)−1/2

1

]
−

1

1 + t

[
1

(2t)1/2

t

]
=

1

1 + t

[ −1
(1− t)(2t)−1/2

1

]
.

From here we compute

|a⊥(t)| =
1
√

2t
.

Hence

N(t) =

√
2t

1 + t

[ −1
(1− t)(2t)−1/2

1

]
and

κ(t) =

√
2t

(1 + t)2
and ρ(t) =

(1 + t)2
√

2t
.

1.4 The tangent circle, and the plane of motion

Let u1 and and u2 be any given pair of orthogonal unit vectors in IRn, and let ρ be any
positive number. Consider the parameterized curve z(t) given by

z(t) = ρ(cos(t)u1 + sin(t)u2) .

Then, since u1 and and u2 are orthogonal unit vectors, |z(t)| = ρ for all t. Also clearly,
z(t) lies in the plane spanned by u1 and u2 for all t. The curve z(t) describes steady
circular motion on the circle of radius ρ about the origin in this plane.

To get a more general sort of circular motion, we can shift the center of the circle away
from the origin, and replace t by θ(t) so that the motion on the circle proceeds at a variable
rate. If c is the new center of the circle, we then have

z(t) = c + ρ(cos(θ(t))u1 + sin(θ(t))u2) . (1.20)

We are now going if x(t) is very a twice differentiable curve at t = t0, and if the
curvature κ(t0) 6= 0, the for t close to t0, the curve x(t) is well approximated by such a
circular motion, and the circle that “fits best” is uniquely determined. This will be the
tangent circle. Of course, at a point where the
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Here is a graph showing a curve in the plane, together with its the tangent line, and its
tangent circle at a particular point x(t0).

As you can see, the tangent circle gives a much better fit to the curve than does the
tangent line. The point c is the center of the circle, and ρ is its radius. As we shall see,
rho = ρ(t0), the radius of curvature of the curve x(t) at t = t0.

Here is one way to think about what the tangent circle represents: If x(t) is your position
at time t as you drive along some track,* you would “feel” at each instant of time t as
if you were diving on a circular track of radius ρ(t) with a center at a point c(t) in the
plane spanned by v(t) and a(t), provided these vectors are linearly independent. This
“instantaneous circular track” is the tangent circle.

The tangent circle is only well defined when the curvature κ(t0) is not zero, so that
N(t0) is well defined. It will lie in the plane through x(t0) spanned by T(t0) and N(t0).
This plane is called the plane of motion. Here are the formal definitions:

Definition (Tangent circle and plane of motion) Let x(t) be a twice differentiable
curve. Then at each t0 for which {v(t0),a(t0)} is a linearly independent set of vectors, the
tangent circle to this curve is the circle with center

c(t0) = x(t0) + ρ(t0)N(t0) (1.21)

with radius ρ(t0), lying in the plane through x(t0) spanned by {v(t0),a(t0)}. This plane
is called the instantaneous plane of motion.

We will soon prove that the formula given in this definition does indeed give the circle
that “best fits” the curve at x(t0). First, let us accept this, and use the formula to compute
and graph a tangent circle.

* This makes sense for n = 2 or 3, but the formulas we will deduce are independent of the interpretation,

and are valid for all n ≥ 2.

1-14



Example 7 (Computing the tangent circle) Let x(t) =

[
t

(2t)3/2/3
t2/2

]
. In Example 2, we have com-

puted the tangent line at t0 = 1, and found it to be given by[
1

23/2/3
1/2

]
+ (t− 1)

[
1

21/2

1

]
.

In Example 6, we computed N(t), T(t) and ρ(t). Evaluating them at t = 1, we get

T(1) =
1

2

[
1

21/2

1

]
N(1) =

1
√

2

[−1
0
1

]
and ρ(1) = 23/2.

Therefore,

c(1) =

[
1

23/2/3
1/2

]
+ 2

[−1
0
1

]
=

[ −1
23/2/3

5/2

]
.

Hence the tangent circle is parameterized by

z(θ) =

[ −1
23/2/3

5/2

]
− cos(θ)2

[−1
0
1

]
+ sin(θ)

√
2

[
1

21/2

1

]
,

with
θ = 2(t− t0) + (t− t0)2/2 .

Here is a graph showing the curve itself, the tangent line, and the tangent circle at t0 = 1.

As you can see, the tangent circle gives a much better fit than the tangent line at the
point of tangency. Our next goal is to justify the formula for the tangent circle that we
have given in the definition, and have just used in the example.

To get a formula for the tangent circle, we are going to show that for each t0, we can
choose c, ρ, u1, u2 and θ(t) in (1.20) so that

lim
t→t0

|x(t)− z(t)|
|t− t0|2

= 0 . (1.22)
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Moreover, as we shall see, there is just one way to choose c, ρ, u1 and u2 to get such a
good approximation. Since c, ρ, u1 and u2 are what determines the circle, this will mean
that it makes sense to talk about the tangent circle.

First, let us match the speeds, We readily compute

z′(t) = ρθ′(t)(− sin(θ(t))u1 + cos(θ(t))u2) . (1.23)

so that |z′(t)| = ρθ′(t). To match the speeds, we require that ρθ′(t) = v(t) where of course
v(t) = |x′(t)|. This gives us a formula for θ′(t), namely

θ′(t) =
v(t)
ρ

. (1.24)

Integrating from t0 to t gives us a formula for θ(t) itself:

θ(t) =
1
ρ

∫ t

t0

v(r)dr . (1.25)

Now that the speeds have been matched, let us match the rest, From (1.23) and (1.24),
since θ(t0) = 0,

z′(t0) = v(t0)u2 .

Of course, x(t0) = v(t0)T(t0), so we get z′(t0) = x′(t0) is and only if

u2 = T(t0) . (1.26)

To go further, we math the acceleration vectors: We compute

z′(t) = ρθ′′(t)(− sin(θ(t))u1 + cos(θ(t))u2)− ρ(θ′(t))2(cos(θ(t))u1 + sin(θ(t))u2) .

Evaluating this at t0, and using θ(t0) = 0, we get

z′(t0) = ρθ′′(t)u2 − ρ(θ′(t))2u1 .

Using (1.24) and (1.26), this is

z′(t0) = v′(t0)T(t0)− v2(t0)
ρ

u1 .

Comparing this with

x′′(t0) = v′(t0)T(t0)− v2(t0)
ρ(t0)

N(t0) ,

we see that to match the acceleration vectors, we must take ρ = ρ(t0) and u1 = −N(t0).
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Finally, to determine c, we require that z(t0) = x(t0). Since

z(t0) = c + ρu2 = c− ρ(t0)N(t0) ,

we require that
c = x(t0) + ρ(t0)N(t0) .

In summary, with the speeds matched through (1.25) we have

z(t0) = x(t0)

z′(t0) = x′(t0)

z′′(t0) = x′′(t0) .

(1.27)

if and only if

z(t) = c + ρ

(
− cos(θ(t))N + sin(θ(t))T

)
(1.28)

Let us fix this well matched choice for z(t). Then, for each j = 1, . . . , n, since zj(t0) =
xj(t0), z′j(t0) = x′j(t0) and z′′j (t0) = x′′j (t0), so that both xj(t) and zj(t) have the same
second order Taylor polynomial at t = t0. Therefore,

lim
t→0

|zj(t)− xj(t)|
|t− t0|2

= 0 . (1.29)

From this and the lemma following Theorem 2, we see that

lim
t→t0

|z(t)− x(t)|
|t− t0|2

= 0 . (1.30)

Conversely, if (1.30) is true, then so is (1.29) for each j. Consequently, both xj(t) and
zj(t) must have the same second order Taylor polynomial at t = t0. Therefore, eqv(vcc94)
must be true. We have proved the following theorem:

Theorem 4 (Tangent circle approximation)Let x(t) be a parameterized curve in IRn

that is twice differentiable at t = t0. Let z(t) be the parameterized circle given by (1.20),
and with θ(t) given by (1.25). Then (1.30) is true if and only if u2 = T(t0), u1 = −N(t0),
ρ = ρ(t0) and c = x(t0) + ρ(t0)N(t0). where the quantities on the right hand sides are
computed for x(t).

In particular, there is just one circular track that fits so well that (1.30) is true, and the
radius of this track is ρ(t0), which further justifies the use of the term “radius of curvature”
for this quantity.

1-17



1.5 Torsion and the Frenet–Seret formulae for a curve in IR3

The case in which n = 3 is especially important, since we live in a three dimensional
world. In this case, we can compute a unit normal to the plane of motion by taking the
cross product of T(t0) and N(t0).

Definition (Binormal vector) Let x(t) be a twice differentiable curve in IR3. Then at
each t0 for which {v(t0),a(t0)} is a linearly independent set of vectors, so that T(t0) and
N(t0) are well defined. Then the binormal vector B(t0) is defined by

B(t0) = T(t0)×N(t0) . (1.31)

Since B(t0) is orthogonal to the plane of motion, and x(t0) lies in this plane, the equation
for the plane of motion in IR3 is given by

B(t0) · (x− x(t0)) = 0 .

Let x(t) be a twice differentiable curve inIR3. Then for each time t, the vectors

{T(t),N(t),B(t)}

are a right handed orthonormal basis of IR3. That is, a curve in IR3 carries around with
itself a special orthonormal basis. How does this basis change with time?

Since {T(t),N(t),B(t)} is a basis, we can express each of T′(t), N′(t) and B′(t) as
linear combinations of these basis elements. Indeed, we have already seen that

T′(t) = v(t)κ(t)N(t) . (1.32)

Next, consider B′(t). Since for each t, B(t) ·T(t) = 0,

0 =
d
dt

(B(t) ·T(t)) = B′(t) ·T(t) + B(t) ·T′(t) .
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But
B(t) ·T′(t) = B(t) · (v(t)κ(t)N(t)) = 0 ,

and so
B′(t) ·T(t) = 0 .

Also, since for each t, B(t) ·B(t) = 1,

0 =
d
dt

(B(t) ·B(t)) = 2B′(t) ·B(t) ,

so that
B′(t) ·B(t) = 0 .

Since B′(t) has no component in the directions of T(t) or B(t), it follows that B′(t) is
a multiple of N(t). This multiple deserve a name. Therefore, in analogy with (1.32), we
define the torsion τ(t) by B′(t) = v(t)τ(t)N(t).

Definition (Torsion) Let x(t) be a twice differentiable curve in IR3. Then at each t0 for
which {v(t0),a(t0)} is a linearly independent set of vectors, so that T(t), N(t) and B(t)
are well defined for t in a neigborhood of t = t0. Then the torsion at t = t0 is the quantity
τ(t0) defined by

B′(t) = v(t)τ(t)N(t) . (1.33)

The torsion describes the instantaneous rate at which the plane of motion rotates about
the tangnet line: If one looks down along the tangen line in the direction of T(t0), and
there is positive torsion, one sees the binormal vector turning counterclockwise.

Again, in this pcture, we are looking along the tangent line, in the direction of motion.
It is also helpful to consider a “top view”, looking down on the plane of motion. Then

we see T(t) and N(t). The curvature describes the rate at which these vectors rotate. By
definition, N give the direction in which T is turning, and so the curvature is always non
negative, and T turns towards N.
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Finally, let us derive a formula for N′(t). Looking at the graphs above, you might be
able to deduce that

N′(t) = −v(t)κ(t)T(t)− v(t)τ(t)B(t) . (1.34)

Let us deduce this by computational means.
First, since for each t, N(t) ·N(t) = 1,

0 =
d
dt

(N(t) ·N(t)) = 2N′(t) ·N(t) ,

so that
N′(t) ·N(t) = 0 . (1.35)

Second, since for each t, N(t) ·T(t) = 0,

0 =
d
dt

(N(t) ·T(t)) = N′(t) ·T(t) + N(t) ·T′(t) .

But
N(t) ·T′(t) = N(t) · (v(t)κ(t)N(t)) = v(t)κ(t) ,

and so
N′(t) ·T(t) = −v(t)κ(t) , (1.36)

Third, since for each t, N(t) ·B(t) = 0,

0 =
d
dt

(N(t) ·B(t)) = N′(t) ·B(t) + N(t) ·B′(t) .

But
N(t) ·B′(t) = N(t) · (v(t)τ(t)N(t)) = v(t)τ(t) ,

and so
N′(t) ·B(t) = −v(t)τ(t) , (1.37)

Combining (1.35), (1.36) and (1.37), we see that (1.34) is true.
Summarizing the results, we have proved the following:
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Theorem 5 (Frenet–Seret formulae) Let x(t) be a twice differentiable curve in IR3.
Then at each t0 for which {v(t0),a(t0)} is a linearly independent set of vectors, so that
T(t), N(t) and B(t) are well defined for t in a neigborhood of t = t0. Then fro t in this
neighborhood,

T′(t) = v(t)κ(t)N(t)

N′(t) = −v(t)κ(t)T(t)− v(t)τ(t)B(t)

B′(t) = v(t)τ(t)N(t) .

There is a convenient way to combine these three formulae into one. If we define the
orthogonal matrix U(t) by

U(t) = [T(t),N(t),B(t)]

and the antisymmetrix matrix A(t) by

A(t) =

 0 −κ(t) 0
κ(t) 0 τ(t)

0 −τ(t) 0

 ,

we have
d
dt
U(t) = v(t)A(t)U(t) .

1.6 Reconstructing a curve in IR3 given its speed, curvature and torsion

Let x(t) be a twice differentiable curve inIR3. We have already seen how to compute
v(t), κ(t) and τ(t).

It turns out that this can be reversed: If you know the lists of data

 v(t)
κ(t)
τ(t)

 for t

in some interval [0, t∗] of time, and curvature is never zero for t in [0, t∗], then you can

reconstruct the curve itself; i.e.,

x(t)
y(t)
z(t)

, in this time interval, provided you are also given

x(0), T(0) and N(0). Once you understand how to do this, you will certainly understand
what curvature and torsion are.

Since the x, y plane is a subset of IR3, every plane curve in IR2 can also be viewed as

curve in IR3; we just identify
[
x(t)
y(t)

]
=

x(t)
y(t)

0

. For such a curve, the plane of motion is

the x, y plane, and B(t) = ±e3. There is therefore no torsion.
It is a little easier to understand this special case, so we start here, with a plane curve.

We are given x(0), T(0) and N(0), together with v(t) and κ(t) for t in the interval [0, t∗].
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The strategy will be a familiar one: We will build up an approximation to the curve by
putting together many small pieces. Then we shall take a limit in which the size of the
small pieces tends to zero. In this limit, we recover the curve exactly.

Here is a picture of a plane curve that is “spiraling in”. The positions x(tj) are marked
for j = 0, 1, . . . , 5. For t0, t1 and t5, you see indicated that center of the tangent circles
c(t0), c(t1) and c(t5) at these times.

Notice that as the curve spirals in, the curvature increases, and so the radii of the
tangent circles decreases.

• As you can see, the curve fits very well to the short circular arcs along these tangent
circles. We are going to build up the curve out of such small circular arcs, keeping track
of how T and N change as we move along the arcs.

To do this, pick a number N , and let h = t∗/N . For j = 0, . . . , N , define tj to be jh.
On each time interval tj−1 ≤ t ≤ tj , we will replace use a circular aprroximation to x(t),
and obtain the curve x(h)(t).

Here is how this works on the first interval t0 = 0 ≤ t ≤ h = t1. From the given data,
we know that the initial tangent circle has radius 1/κ(0), and is centered at

c(0) = x(0) + (1/κ(0))N(0) . (1.38)

Our approximate motion will simply be motion along the tangent circle at constant
speed v(0). From (1.25), we see that this mean that the angle θ(t) on the circle will be
given by

θ(t) = κ(0)v(0)t .

Using this and (1.38) in (1.28), we get a formula for x(h)(t) valid for 0 ≤ t ≤ h:

x(h)(t) = [x(0) + (1/κ(0))N(0)] +
1

κ(0)
[− cos(κ(0)v(0)t)N(0) + sin(κ(0)v(0)t)T(0)] .
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Now, using this formula, we can compute x(h)(t1), and its unit tangnet and normal vec-
tors at time t1: T(h)(t1) and N(h)(t1). We can then repeat the procedure. Just start from
T(h)(t1) and N(h)(t1) as the initial data, and make the same tangent circle approximation
for t ≤ t ≤ t2. If one continues for N steps, one gets the whole curve x(h) which will be
continuous, and piecewise twice differentiable. (The curve will be continuous at each tk;
the circles fit together there, but it will not be continuously differentiable at such times,
since in general the speed will change discontinuously there.)

Let us formalize this as a recursive algorithm for generating x(h)(t) for 0 ≤ t ≤ t∗:

Curve contruction algorithm: We are given x(0), T(0) and N(0), as well as v(t) and
κ(t) for 0 ≤ t ≤ t∗. We pick a (large) value of N , and define h = t∗/N . We assume that
κ(t) > 0 for all 0 ≤ t ≤ t∗.

(1) (initialization) Define x(h)(0) = x(0), and define T1 = T(0) and N0 = N(0).

Then, starting with j = 0, and while j < N :
(2) (segment contruction) Given x(h)(tj) and the orthonormal unit vectors Tj and Nj ,
define the center cj by

cj = x(h)(tj) + (1/κ(tj))Nj , (1.39)

and define x(h) for tj ≤ t ≤ tj+1 by

x(h)(t) = cj +
1

κ(tj)
(
− cos[κ(tj)v(tj)(t− tj)]Nj + sin[κ(tj)v(tj)(t− tj)]Tj

)
. (1.40)

(3) (updating T and N) Using (1.40) compute T(tj+1) and N(tj+1) for x(h)(t). Define
these to be Tj+1 and Nj+1, which amounts to

Tj+1 = sin[κ(tj)v(tj)h]Nj + cos[κ(tj)v(tj)h]Tj

Nj+1 = cos[κ(tj)v(tj)h]Nj − sin[κ(tj)v(tj)h]Tj

Finally, replace j by j + 1.

Notice that the algorithm breaks down for if for some tj , κ(tj) = 0: If this ever happened,
the divisions in (1.39) and (1.40) would be undefined. When the curvature is zero, N is
undefined, and this is what happens whenever one switches from turning left, say, to
turning right. At the moment in between, one is going straight ahead, and N is undefined.

Here is a picture showing this:
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The direction of travel along the curve is indicated by the arrows. The orthogonal
vectors are the unit normal vectors at various points, indicating the direction of turning.
At the point where the curve switches from turning left to turning right, N is undefined.
It has a well defined one sided limits at this point though, and they are opposite to one
another. Roughly speaking, “N changes sign at this point”.

We can get another curve that has the exact same speed v(t) and curvature κ(t) by just
continuing without changing the sign of N at this point. Here is a graph of it:

In so far as the graph is accurate, the second option for continuation of the curve past
the point of zero curvature is just the reflection of the first one about the tangent line at
that point.

You see from this example that whenever the curvature is zero for some values of t, there
will be more than one curve with that curvature, even with the same speed. However, you
also see what you need to do to uniquely specify the curve: You just need to specify
whether N changes sign or not at the flat spot.

It is less crucial to the algorithm that the speed v(t) also be strictly positive. However,
if the speed were zero initially, the initial unit tangent vector would be undefined.

Now that we have understood the planar case, let us go on to the three dimensional
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case, and bring torsion into the picture. This will bring another step into our algorithm:
After we have moved a step along the tangent circle, we must rotate the plane of motion,
either clockwise or counterclockwise, according to the sign and magnitude of the torsion.

Let Tj , Nj and Bj be the unit tangent, normal and binormal at time tj . Let Tj+1, Ñj+1

and B̃j+1 denote the unit tangent, normal and binormal after moving along the tangent
circle a distance v(tj)h, as before. We have put tildes over the normal and binormal as we
are not done with them yet.

Now, to take the torsion into account, we make a rotation in the plane spanned by Ñj+1

and B̃j+1, which tilts the plane of motion. By one of the Frenet–Seret formulae,

B′(t) = v(t)τ(t)N(t) . (1.41)

If v and τ are constant. Now consider the rotation depicted below:

Here
B(t) = cos(θ(t))B(0) + sin(θ(t))N(0)

N(t) = − sin(θ(t))B(0) + cos(θ(t))N(0)

(Note: we are only taking into account the turning of N due to the torsion, and not the
curvature. The latter happens in the plane of motion, which is not what we are graphing
here.).

It follows that
B′(0) = θ−θ′(0)N(0) . (1.42)

Comparing (1.41) and (1.42), we see that if v and τ are steady, then the total rotation
over a time interval of length h is θ = vτh.

Therefore, we take into account the torsion by updating Ñj+1 and B̃j+1 to produce
Nj+1 and Bj+1 as follows:

Bj+1 = cos(v(tj)τ(tj)h)B̃j+1 + sin(v(tj)τ(tj)h)Ñj+1

Nj+1 = − sin(v(tj)τ(tj)h)B̃j+1 + cos(v(tj)τ(tj)h)Ñj+1

Now, here is the curve reconstruction algorithm in three dimensions:
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Curve contruction algorithm: We are given x(0), T(0) and N(0), as well as v(t), κ(t)
and τ(t) for 0 ≤ t ≤ t∗. We pick a (large) value of N , and define h = t∗/N . We assume
that κ(t) > 0 for all 0 ≤ t ≤ t∗.

(1) (initialization) Define x(h)(0) = x(0), and define T0 = T(0), N0 = N(0) and B0 =
bT0 ×N0.

Then, starting with j = 0, and while j < N :
(2) (segment contruction) Given x(h)(tj) and the orthonormal unit vectors Tj and Nj ,
define the center cj by

cj = x(h)(tj) + (1/κ(tj))Nj , (1.43)

and define x(h) for tj ≤ t ≤ tj+1 by

x(h)(t) = cj +
1

κ(tj)
(
− cos[κ(tj)v(tj)(t− tj)]Nj + sin[κ(tj)v(tj)(t− tj)]Tj

)
. (1.44)

(3) (updating T, N and B, first part) Using (1.40) compute T(tj+1) and N(tj+1) for
x(h)(t). Define these to be Tj+1 and Nj+1, while keeping Bj unchanged. This amounts
to

Tj+1 = sin[κ(tj)v(tj)h]Nj + cos[κ(tj)v(tj)h]Tj

Ñj+1 = cos[κ(tj)v(tj)h]Nj − sin[κ(tj)v(tj)h]Tj

B̃j+1 = Bj .

(4) (updating T, N and B, second part) Now tilt the plane of motion according to the
torsion and the speed at time tj :

Bj+1 = cos(v(tj)τ(tj)h)B̃j+1 + sin(v(tj)τ(tj)h)Ñj+1

Nj+1 = − sin(v(tj)τ(tj)h)B̃j+1 + cos(v(tj)τ(tj)h)Ñj+1

Finally, replace j by j + 1.

We now state a theorem telling us that if we take h small enough, we do get a good
reconstruction of our curve.

Theorem 5 (Curve Reconstruction from curvature and speed in IR2) Let x(t) be
a parameterized curve in IR3 that is twice differentiable, and suppose that v(t) > 0 and
κ(t) > 0 for all t in the time interval [0, t∗]. Let x(h)(t) be the curve defined by the curve
reconstruction algorithm above. Then for each t with 0 ≤ t ≤ t∗,

lim
t→∞

x(h)(t) = x(t) .
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We shall not prove the theorem here. The main point is that because the tangent circle
approximation is a second order approximation, the error we make at each step in the
recursion has a size proportional to h2. We make N = 1/h such mistakes, so in the end
the cummulative error is proprtional to h, and hence vanished as h tends to zero.

1.7 The curvature and torsion are independent of the parameterization.

The same path can be parameterized many ways. For instance, in Examples 4 and
5, we considered two different parameterizations of the circle of radius r centered on the
origin in IR2. Though the parameterized curves in Examples 4 and 5 are different, and
have different velocities and accelerations, they trace out the same path in the plane.

The difference between these two parameterizations is the rate at which the path is
traced out. In Example 4, this is done at a steady rate, while in Example 5, the tracing is
done faster and faster. It turns out, however, that the curvature at a point on the path is
a purely geometric property of the path itself – it is independent of the parameterization.
Not only that, so is the unit normal vector, and, up to a sign, so is the unit tangent vector.

To see this suppose that x(t) and y(u) are two parameterizations of the same path in
IRn. Suppose that

x(t0) = y(u0)

so that when t = t0 and u = u0, both curves pass through the same point. Let us “match
up” the times for the two curves on intervals round t0 and u0 by defining the function t(u)
so that

y(u) = x(t(u)) . (1.45)

That is, t(u) is the time at which the first curve passes through y(u). As long as the
parameterizations are one to one, which we shall suppose to be the case, the function t(u)
is well defined.

It turns out that if both prameterizations are differentiable, then t(u) is differentiable
as well. Let us assume that this is the case.

Then, by the chain rule and (1.45)

y′(u) =
d

du
y(u) =

d
du

x(t(u)) =
(

dt
du

)
x′(t(u)) .

Evaluating at u = u0, and recalling that t0 = t(u0), we get the following relation between
the speed at which the two curve pass through the point in question:

|y′(u0)| =
∣∣∣∣ dt
du

∣∣∣∣ |x′(t0)| .

Therefore,

1
|y′(u0)|

y′(u0) =

(∣∣∣∣ dt
du

∣∣∣∣−1 dt
du

)
1

|x(t0)|
x′(t0)

= ± 1
|x(t0)|

x′(t0) .
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The plus sign is correct is t is an increasing function of u, in which case the two parame-
terizations trace the path out in the same direction, and the minus sign is correct if t is a
decreasing function of u.

This shows that up to a sign, the unit tangent vector T at the point in question comes
out the same for the two parameterizaions.

Next, let us differentiate once more. We find

y′′(u) =
d

du
y′(u) =

d
du

((
dt
du

)
x′(t(u))

)

=
(

d2t

du2

)
x′(t(u)) +

(
dt
du

)2

x′′(t(u)) .

Evaluating at u = u0, and recalling that t0 = t(u0), we find the following formula relating
the acceleration along the two curves as they pass though the point in question:

y′′(u0) =
(

d2t

du2

)
x′(t0) +

(
dt
du

)2

x′′(t0) .

Notice that the first term on the right is a multiple of T, and hence when we decompose
y′′(u0) into its tangential and orthogonal components, this piece contributes only to the
tangential component. Hence

(y′′(u0))⊥ =

((
dt
du

)2

x′′(t0)

)
⊥

=
(

dt
du

)2

(x′′(t0))⊥ .

Because of the square, (y′′(u0))⊥ is a positive multiple of (x′′(t0))⊥, and so these two
vectors point in the exact same direction. That is,

N =
1

|(y′′(u0))⊥|
(y′′(u0))⊥ =

1
|(x′′(t0))⊥|

(x′′(t0))⊥ ,

showing that the normal vector N is independent of the parameterization.
Next, we consider the curvature. Since

1
|y′(u0)|2

|(y′′(u0))⊥| =
(

dt
du

)−2 1
|x′(t0)|2

(
dt
du

)2

|(x′′(t0))⊥|

=
1

|x′(t0)|2
|(x′′(t0))⊥| ,

we get the exact same value for the curvature at the same point, using either parame-
terization. This show that although in practice we use a particular parameterization to
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compute the curvature κ and the unit normal N, the results do not depend on the choice
of the paramerterization, and are in fact an intrinsically geometric property of the path
that the curve traces out.

Let us go on to consider B(t) and τ(t). Since B(t) = T(t)×N(t), it follows that B(t)
is well defined, independent of the parameterization, up to a sign. Then, consideration of
the formula

B′(t) = v(t)τ(t)N(t)

under two parameterization shows that like the curvature, the torsion is independent of
the parameterization. It is determined by the geometry of the track itself, and not how
fast or slow we move along it.

1.8 The winding number of a plane curve

There is something special about plane curves; i.e., curve in IR2. The special thing
is that there is a well–defined notion of a counterclockwise rotation by π/2 in the plane.

Given any vector v =
[
a
b

]
, the vector v⊥ given by

v⊥ =
[
−b
a

]

is obtained from v by counterclockwise rotation through the angle π/2. Indeed, by the
angle addition formulas,

[
cos(θ)
sin(θ)

]⊥
=
[
− sin(θ)

cos(θ)

]
=
[

cos(θ + π/2)
sin(θ + π/2)

]
.

Therefore, for a planar curve, it makes sense to say whether the curve is turning in a
clockwise or a counterclockwise direction: As we have seen, T′(t) = v(t)κ(t)N(t), so that
T′(t) is either proportional to (T(t))⊥, or else to −(T(t))⊥. In the first case, the curve is
“curving” counterclockwise, and in the second it is “curving” clockwise.

Intuitively, curvature has to do with turning. The more curvature a curve has, the more
it turns round and round. Can we devise a formula for the cumulative “turning” that a
plane curves makes in some given time interval?

Yes, and here is how: The vectors {T(0), (T(0))⊥} are a right handed orthonormal
basis for IR2. Taking this basis as our reference basis, we may identify these vectors with
{e1, e2}. Now, at any later time, T(t) is a unit vector, and so it has the form

T(t) =
[

cos(θ(t))
sin(θ(t))

]
.

for some θ(t) that is defined up to a multiple of 2π.

1-29



In fact, we can define θ(t) absolutely; i.e., without an ambiguity about multiples of 2π.
The key to this is to note that in any case, θ′(t) is well defined. Indeed,

T′(t) = θ′(t)
[
− sin(θ)

cos(θ)

]

so that
T(t)⊥ ·T′(t) = θ′(t) .

Defining θ(0) = 0, we have

θ(t) =
∫ t

0

θ′(r)dr =
∫ t

0

(
T⊥(t) ·T′(t)

)
dr .

Notice that the right hand side is well defined for any twice differentiable curve. This
formula give the cumulative angle of rotation of the unit tangent vector T up to time t.

Now consider a closed curve that periodically runs over the same track, over and over.
That is, there is a time t∗ so that for all t,

x(t+ t∗) = x(t) .

The time t∗ is called the period of the curve. It is easy to see that x(t∗) = x(0), and also
that

T(t∗) = T(0) .

Now, since T(t∗) points in the same direction as T(0), it must be that θ(t∗) is an integer
multiple of 2π. This integer is called the winding number of the curve. This justifies the
following definition:

Definition (Winding number of a planar ) Let x(t) be a parameterized curve in the
plane that is closed and periodic with period t∗ > 0; i.e., x(t + t∗) = x(t) for all t. Then
the winding number of this curve it the integer

1
2π

∫ t∗

0

(
T⊥(t) ·T′(t)

)
dr . (1.46)

The winding number counts the number of times T turns around counterclockwise on
one circuit of the curve. Here are some pictures of closed planar curves with the direction
of motion indicated by arrows, and with some unit tangent vectors sketched in so that you
can see the turning.
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In the first curve, T turns around once counterclockwise, so the winding number is +1.
If we reverse the direction of motion, it would be −1.

The second curve has two loops. one clockwise, and one counterclockwise, so the winding
number is zero. The third curve has four loops. two clockwise, and two counterclockwise,
so the winding number is zero here as well.

Next, here is a picture of a curve with winding number +3. We indicate the direction
of motion by arrow on the curve, but do not sketch in unit tangent vectors this time to
keep the graph from getting too busy.

We close by mentioning a more convenient formula for the winding number: First, it is
easy to see that

T⊥ =
1
v

v⊥ ,

where we are suprresing the dependence on t in our notation to keep it simple.
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Combing this with formula (1.19), namely T′ = vκN, we have

T⊥ ·T′ = κv⊥ ·N .

But since the component of a that is orthogonal to v is κv2N,

κv⊥ ·N =
1
v2

v⊥ · a .

Combining results,

T⊥ ·T′ =
1
v2

v⊥ · a ,

and so we have another formula that is equivalent to (1.46), but is more convenient for
computation:

1
2π

∫ t∗

0

(
1

v2(t)
v⊥(t) · a(t)

)
dr . (1.47)

Example 8 (Computing a winding number) Consider the planar curve

x(t) =

[
1 + cos(t) + cos(2t)

sin(t) + sin(2t)

]
.

Notice that this curve is periodic with period t∗ = 2π.
One easily computes

v(t) =

[
− sin(t)− 2 sin(2t)

cos(t) + 2 cos(2t)

]
and a(t) = −

[
cos(t) + 4 cos(2t)
sin(t) + 4 sin(2t)

]
.

From here it easily follows that

v2(t) = 5 + 4(sin(t) sin(2t) + cos(t) cos(2t)) and v⊥(t) = −
[

cos(t) + 2 cos(2t)
sin(t) + 2 sin(2t)

]
,

so that
v⊥(t) · a(t) = 9 + 6(cos(t) cos(2t) + sin(t) sin(2t) .

At this point is might look rather unlikely that (1.47) will yield an integer. But using the angle addition
identities, one sees that actually

sin(t) sin(2t) + cos(t) cos(2t) = cos(t) ,

and so the winding number is just

1

2π

∫ 2π

0

9 + 6 cos(t)

5 + 4 cos(t)
dt .

This intergal may now be evaluated, using the tan(θ/2 substitution, for example, and one finds that the
winding number is 2.

1.6 Speed and arc length
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As we have explained above, the speed v(t) represents the rate of change of the distance
traveled with time. Given some reference time t0, define

s(t) =
∫ t

t0

v(u)du . (1.48)

Then by the Fundamental Theorem of Calculus,

d
dt
s(t) = v(t)

and clearly s(t0) = 0. Hence the rate of change of s(t) is v(t), which is the rate of change
of the distance traveled with time, as one has moved along the path traced out by x(t).

Definition (Arc length) The function s(t) defined by (1.48) is called the arc length along
the path traced out by x(t) since time t0.

Example 9 (Computation of arc length) Let x(t) be given by x(t) =

[
t

23/2t3/2/3
t2/2

]
as in the previous

example. Then, as we have seen, for all t > 0, v(t) = 1 + t. Therefore,

s(t) =

∫ t

0

(1 + u)du = t+
t2

2
.

If you took a piece of string, and cut it so it can be run along the path from the starting point to the

position at time t, the length of the string would be t+ (t2/2) units of distance.

By definition, v(t) ≥ 0, and so s(t) has a non negative derivative. This means that it
is an increasing function. As long as v(t) > 0; i.e., as long as the particle never comes to
even an instantaneous rest, s(t) is strictly monotone increasing.

Suppose also that s(t) increases without bound, so that

lim
t→∞

s(t) =∞ .

Then for any s ≥ 0, there is exactly one value of t ≥ 0 so that

s(t) = s . (1.49)

This value of t, considered as a function of s, is the inverse function to the arc length
function:

t(s) = t . (1.50)

It answers a very simple question, namely: How much time will have gone by when the
distance travelled is s units of length?
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If you can compute an explicit expression for s(t), such as the result s(t) = t+ t2

2 that
we found in Example 9, that one has to do to find the inverse function t(s) is to solve
(1.49) to find t in terms of s:

Example 10 (Time as a function of arc length) Let x(t) be given by x(t) =

[
t

23/2t3/2/3
t2/2

]
as in the

previous example. Then, as we have seen, for all t > 0, s(t) = t+ (t2/2), To find t as a function of s, write
this as

s = t+
t2

2

and solve for t in terms of s. In this case,

t+
t2

2
=

1

2
((t+ 1)2 − 1)

so
t =
√

2s+ 1− 1 .

That is,
t(s) =

√
2s+ 1− 1 .

This function tells you how long it took to travel a given distance s when moving along the curve.

We can then get a new parameterization of our curve by defining x(s) by

x(s) = x(t(s)) .

This is called the arc length parameterization.

Example 11 (Converting to the arc length parameterization) Let x(t) =

[
t

23/2t3/2/3
t2/2

]
as in the

previous example. Then, as we have seen, for all t > 0, t(s) =
√

2s+ 1− 1 Therefore,

x(s) = x(t(s)) =

[ √
2s+ 1− 1

23/2(
√

2s+ 1− 1)3/2/3
(
√

2s+ 1− 1)2/2

]
.

The arc length parameterization generally is complicated to work out explicitly. Even
when you can work it out, it often looks a lot more complicated than whatever t param-
eterization you started with, as in the previous example. So why do we bother with it?
What is it good for?

The point about the arc length parameterization is that it is purely geometric, so that
it helps us to understand the geometry of a curve. If we compute the rate of change of the
unit tangent vector T as a function of s, we are computing the rate of turning per unit
distance along the curve. This is an intrinsic property of the curve itself. If we compute
rate of change of the unit tangent vector T as a function of t, we are computing something
that depends on how fast we are moving on the curve, and not just on the curve itself.
Indeed, if we use the arc length parameterization, v(s) = 1 for all s, and so the factors
involving speed drop out of all of our formulas. They simplify to, for example,

d
ds

x(s) = T(s)
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and
d
ds

T(s) = κ(s)N(s) .

Often, this last formula is taken as the definition of the normal vector N and curvature
κ. It has the advantage that this definition is manifestly geometric, so that the normal
vector N and curvature κ do not depend on the parameterization of the curve. It has
the disadvantage that it is generally very difficult to explicitly work out the arc length
parameterization. In order to more quickly arrive at computational examples, we have
chosen the form of the definition that is convenient for computation.

We close this section by pointing out some direct formulas for computing the curvature
κ based on Theorem 3. The formula (1.18); i.e.,

a(t) = v′(t)T(t) + v2(t)κ(t)N(t) ,

provides a simple means for computing the curvature without working out the arc length
parameterization. The points is that the left hand side, a(t), is generally quite simple
to compute – just take two derivatives. Once you have done this, you can extract the
curvature. How you would do this depends on the dimension, though.

Suppose the curve is in IR3. Then we can take the cross product of the velocity and
the acceleration. Since v(t) is proportional to T(t) and since the cross product of parallel
vectors is zero,

v × a = (vT)× (v′T + v2κN)

= vv′T×T + v3κT×N

v3κT×N .

Since T and N are orthogonal unit vectors, T×N is another unit vector, and so

|v × a| = v3κ .

This gives us the formula

κ =
|v × a|
v3

. (1.51)

In two dimensions, we can simply take the cross product of v⊥ and a with the same
effect:

v⊥ · a = (vT⊥) · (v′T + v2κN)

= vv′T⊥ ·T + v3κT⊥ ·N

= ±v3κT⊥ ·N

since T⊥ = ±N so that T⊥ ·N = ±1. This gives us the formula

κ =
|v⊥ · a|
v3

. (1.52)
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There can be no ambiguity about which formula holds in which dimension – the cross
product is only defined in IR3, and the “perping” operation is only defined in IR2.

Example 12 (Computing the curvature) Let x(t) =

[
t

23/2t3/2/3
t2/2

]
as before. We have already

computed a(t) and v(t). Taking their cross product, we find

v × a =
1

2

[ √
2t
−2√
2/t

]
.

Since v(t) = 1 + t, we have

κ(t) =

√
4 + 2t+ 2/t

2(1 + t)3
.

Problems

1 Let x(t) = r

[
cos(t)
sin(t)

]
where r > 0. This is a parameterization of the unit circle.

(a) Compute v(t) and a(t).

(b) Compute v(t) and T(t).

(c) Compute s(t), the arclength at time t, and t(s), the time to travel arc length s .

(d) Compute the normal and tangential components of the acceleration at time t.

(e) Compute κ(t).

2 Let x(t) =

[
t+ 1
t2

]
. This is a parameterization of the parabola y = (x− 1)2.

(a) Compute v(t) and a(t).

(b) Compute v(t) and T(t).

(c) Compute s(t), the arclength at time t, and t(s), the time to travel arc length s .

(d) Compute the normal and tangential components of the acceleration at time t.

(e) Compute κ(t).

3 Let x(t) =

[
t

2
√
t

1/t

]
.

(a) Compute v(t) and a(t).

(b) Compute v(t) and T(t).

(c) Write down the indefinite integral that gives s(t).

(d) Compute the normal and tangential components of the acceleration at time t.

(e) Compute κ(t).

4 Let x(t) =

[ √
t

2/
√
t

t

]
.

(a) Compute v(t) and a(t).

(b) Compute v(t) and T(t).

(c) Write down the indefinite integral that gives s(t).

(d) Compute the normal and tangential components of the acceleration at time t.

(e) Compute κ(t).
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5 Let x(t) be a twice differentiable curve in IR3. Show that

B(t) =
ρ(t)

v3(t)
v(t)× \(t) .

6 Let x(t) be a twice differentiable curve in IR3. Show that the torsion τ(t) is given by

τ(t) =
1

v(t)
N(t) ·B′(t) .

Then, using the result of Exercise 5, show that

τ(t) =
ρ2(t)

v6(t)
v(t)× a′(t) · a(t) .

7 For the curve in Exercise 3, compute the binormal vector B(t) and the torsion τ(t).

8 For the curve in Exercise 3, compute the binormal vector B(t) and the torsion τ(t).

9 Let x(t) =

[
2 cos(5t) + sin(t)
2 sin(5t)− cos(t)

]
. Notice that this curve is periodic with period t∗ = 2π. Compute its

winding number.

10 Let x(t) =

[
cos(5t) + 4 sin(3t)
sin(5t)− 4 cos(3t)

]
. Notice that this curve is periodic with period t∗ = 2π. Compute its

winding number.

1-37



Section 2: Vector Fields and Motion

2.1 Differential equations

Consider a mass m attached to a spring. Identify 0 with the equilibrium position of the
mass, and let x denote its displacement from equilibrium. If the spring is an ideal spring,
obeying Hooke’s law, there will be a force acting on the mass, pulling it back towards 0,
and the strength of the force will be proportional to the displacement. If we let k denote
the constant of proportionality, then the force is F = −kx.

Newton’s second law says that the acceleration a of the mass, which is the second time
derivative of the displacement; i.e., x′′, is given by F = ma. This gives us the differential
equation

−kx = mx′′ .

Choosing units in which k/m = 1, and displaying the time dependence explicitly, we have

x′′(t) = −x(t) . (2.1)

This is a second order equation, meaning that it involves second derivatives.
If we are given the initial values of the position and velocity; i.e., x(0) and x′(0), there

is exactly one function x(t) satisfying (2.1). In other words,

• A differential equation, like (2.1), together with appropriate initial data, is just a speci-
fication of a function.

We are familiar with other ways to specify functions – in particular by formulas. We
will soon see how to deduce that the only function x(t) satisfying

x′′(t) = −x(t) with x(0) = x0 and x′(0) = v0 (2.2)

is
x(t) = x0 cos(t) + v0 sin(t) . (2.3)

You should be able to check that the function defined in (2.3) does satisfy everything
imposed in (2.2). We will come back to the issue of uniqueness, but if there were other
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solutions, Newton’s second law would have to be supplemented with something to select
the “right” one. It does not have to be supplemented.

There is a third way we can specify a function: In terms of a graph. The graph is
often the most useful specification, and one of the main reasons you might want to find an
explicit formula such as (2.3) is that then you can graph x as a fucntion of t. For x0 = 1
and v0 = −1, and 0 ≤ t ≤ 10, the graph would be:

What we are after here is an understanding of motion as described by a differential
equation such as (2.1). Our goal will be to produce graphs that accurately describe the
motion. If the differential equation involves second or other higher order derivatives, as
does (2.1), the first step is to reduce the differential equation to a system of first order
differential equations; i.e., differential equation involving only first derivatives.

2.2 Reduction to a system of first order differential equations

We begin the explanation with an example. Consider the second order equation (2.1).
Introduce a new function y(t) defined by y(t) = x′(t). Then y(t) is the velocity at time t,
and clearly y′(t) = x′′(t) = −x(t). Hence we have the system of differential equations

x′(t) = y(t)

y′(t) = −x(t)

This is a linear system of first order differential equations. If we introduce the vector

function x(t) =
[
x(t)
y(t)

]
and the matrix A =

[
0 1
−1 0

]
. We have

x′(t) = Ax(t) .
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We can express the initial conditions in (2.2) as x(0) = x0 where x0 =
[
x0

v0

]
. The solution

of the linear system
x′(t) = Ax(t) with x(0) = x0 . (2.4)

is given by
x(t) = etAx0 (2.5)

We know how to calculuate etA for any square matrix A. In this case, things are
relatively easy because A is diagonalizable. As you can check, the eigenvalues are i and

−i, and corresponding eigenvectors are u1 =
1√
2

[
1
i

]
and u2 =

1√
2

[
i
1

]
. Therefore, with

U =
1√
2

[
1 i
i 1

]
etA = U

[
eit 0
0 e−it

]
U∗

=
1
2

[
eit + e−it i(e−it − eit)
i(eit − e−it) eit + e−it

]
=
[

cos(t) sin(t)
− sin(t) cos(t)

]
In the last equality, we have used Euler’s formula

eiθ = cos(θ) + i sin(θ) .

You now see what the solution does: The initial data vector x0 just gets rotated at unit
angular velocity in the counterclockwise direction.

Then, from (2.5),

x(t) =
[

cos(t) sin(t)
− sin(t) cos(t)

] [
x0

v0

]
=
[
x0 cos(t) + v0 sin(t)
v0 cos(t)− x0 sin(t)

]
.

In particular, we see that the x coordinate of x(t) is given by (2.3).
One reason for rewriting a second order equation as a system of first order equations

is that when the system is linear, we can use (2.5) to solve it, as in the example we just
discussed.

A second, and more important, reason is that it affords us a useful way to visualize and
think about the motion described by the equation.

The visualization for (2.4) will be done in x, y plane, which is the space of all initial
data for this eqaution. In this context, the x, y plane is often called the phase plane or
phase space of the system. If we graph the solution curve x(t), we get what is called a
phase portrait of the motion. Here is the phase portrait showing the solution of (2.4) for
0 ≤ t ≤ 10.
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The circle is the path traced out in the phase plane by the solution. If you proceed
around the circle at constant speed, starting from (1,−1), at unit angular velocity, the
x–coordinate of your path traces out the sinusoidal graph pictured above in the first graph
of this section.

Now, what about all of those little arrows in the phase portrait? They show the direction
and speed of motion in the phase plane.

At each point
[
x
y

]
, there is the vector

[
y
−x

]
=
[

0 1
−1 0

] [
x
y

]
. The corresponding unit

vector, namely
1√

x2 + y2

[
x
y

]
gives the direction of motion through that point – and in

the diagram, you see the path “following the arrows”.
What we have here are two vector valued functions: For each input vector x, there is

an output vector that specifies the direction and speed of the motion though x, or, in the
second case, just the direction. Vector valued functions of this type are call vector fields.
If you look at the picture above, you can see why. It almost looks some some sort of
crop circle in a wheat field. Understanding vector fields in phase portraits is the key to
understanding differential equations such as (2.3).

The ideas used to analyze this spring problem can be applied quite generally:

• Faced with a second order differential equation – these come up all the time, through
Newtons second law – we convert it to a system of first order equations by introducing a
new velocity variable. We then try to solve this system. If it happens to be linear, we can
do this by computing a matrix exponential.
Example 1 (A damped spring) Again consider our spring, but this time, suppose that there is friction.
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If the frictional force is proportional to the velocity, with proportionaliy constnat c – in units in which the
k/m = 1 – we have that the force is −x− cx′. That is, we have the second order equation

x′′ = −x− cx′ .

Introducing the velocity y = x′, we have the first order system of differential equations

x′(t) = y(t)

y′(t) = −x(t)− cx(t)

This can be written in vector form as
x′ = Ax

where this time

A =

[
0 1
−1 −c

]
.

Again, we have a linear system, and so the solution with x(0) = x0 is given by x(t) = etAx0.
So that we can draw graphs, we will choose a particular value of c. The value we choose is c = 1/3.

Then, the result of an involved computation is that

etA =
e−t/6
√

35

[√
35 cos(t

√
35/6) + sin(t

√
35/6) 6 sin(t

√
35/6)

−6 sin(t
√

35/6)
√

35 cos(t
√

35/6) + sin(t
√

35/6)

]
,

and the solution is x(t) = etAx0. Here is the phase portrait:

The path spirals in this time, and you can see that this is what the vector field directs it to do.

This corresponds with physical intuition: We expect the friction to “damp the motion out”, so that the

oscillations will become smaller and smaller. This is what you see in the phase portrait.
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More generally, we might have the equation.

x′′(t) = f(x′(t), x(t)) ,

where f is some given function of two variables. Then introducing y(t) = x′(t), we have
the equivalent system

x′(t) =
[
x′(t)
y′(t)

]
=
[

y(t)
f(y(t), x(t))

]
.

This reduction method is very simple, and very useful. It can be applied much more
generally – to equations of higher order, and even system if equations of higher order.
This is indicated in the Exercises. In the next section we explain why the reduction is very
useful, even when the resulting system is not linear.

2.3 Vector fields

The examples of systems of differential equations that we have discussed so far could
be solved exactly because they were linear. In many other examples, the system will not
be linear . That is, x′ will not be a linear function of x, and we cannot write our equation
in the form x′ = Ax for a constant matrix A. We will instead have x′ = F(x) where the
function F is a non linear vector field.

Definition (Vector field) A vector field on IRn, or some open domain in IRn, is simply
a vector valued function F(x). That is, F is a function from IRn to IRm. A vector field F
is linear if and only if it can be written in the form F(x) = Ax for some constant matrix
A. Otherwise, it is non linear.

We will usually be interested in the case when m = n, and in particular, we will now
focus on the case m = n = 2. In this case we can draw pictures.

For example, here is a non linear vector field:

F(x, y) = (1 + x2 + y2)−1/2

[
(y + x+ 4)(3x− y − 1)

(y + 2x+ 8)(2x− 2y − 7)

]
. (2.6)

This is very non linear. Here is a plot of this vector field. with a “field” of arrows drawn
at the points of a grid.
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Think of the arrows as direction and speed indicators attached to a dense grid of sign-
posts. These arrows tell you which direction you should go, and how fast. The speed is
indicated by the length of the vector.

From this point of view, a vector field describes a “flow” across the phase plane. You
just move across the plane, following the arrows at every step.

In other words, we can think of a vector field as giving a set of instructions for motion
in the x, y plane. If you choose a starting point in the plane, and then move according to
the instructions encoded into the vector field, you will trace out a curve. Such a curve is
called a flow line of the vector field. These curves are the graphs of the solutions of the
system of differential equations, and you see one in each of the phase portraits we drew
above. The question before us is:

• How do we read out the “instructions for motion” coded into the vector field, and graph
the flow lines?

2.4 The Euler Scheme

There is a very simple and straight forward algorithm for finding the flow lines – or at
least a good approximation to them. If our goal is to draw a graph, we do not really need
the exact curves anyhow: Any error of approximation that shifts the curve less than one
pixel will be invisible anyway. This simple algorithm is known as the Euler scheme, or
sometimes the forward Euler scheme. It builds the path up “step by step” in a “connect
the dots” fashion”.
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The Euler Scheme

Fix a time step h > 0, and a starting point x0. Recursively define a sequence of points
{xn}, n ≥ 0 by

xn = F(xn−1)h for all n ≥ 1 . (2.7)

Define a vector valued function x(h)(t) by “connecting the dots”: For any t > 0, let k be
the largest integer such that kh ≤ t. Then put

x(h)(t) = xk + (t− kh)xk+1 . (2.8)

The Euler scheme involves the choice of the time step h. How to choose h is a matter
that requires some thought. But for now, let’s bypass all that. Once h is chosen, the Euler
scheme is very easy to implement.

The terms of the recursively defined sequence are:

x1 = x0 + F(x0)h

x2 = x1 + F(x1)h

x3 = x2 + F(x2)h

... =
...

(2.9)

The idea is that when you are at x0, you should move in the direction (1/|F(x0)|)F(x0)
with the speed |F(x0)|. In h units of time, this would carry you to x0 + F(x0)h, which is
what we have called x1. From there, you move in the direction (1/|F(x1)|)F(x1) with the
speed |F(x1)|. In h units of time, this would carry you to x1 + F(x1)h, which is what we
have called x2. Connecting up the dots, we get a path in the phase plane. It is certainly
intuitively clear that if we choose a small value of h, and implement the Euler scheme, we
will not be doing a bad job of “following the instructions for motion” encoded into the
vector field.

For example, consider the vector field F given by (2.6). We consider six different start-

ing points x0:
[
−1
−1

] [
−3
−4

] [
−1/2
−1

] [
−1
−2

] [
−2
−4

] [
−3
−3

]
. Using the

time step the time step h = 0.05, and running 60 steps so that the final time corresponds
to t = 3, we find the paths:
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What you see are the graphs of x(0.05) for eight different starting points. The idea,
which turns out to be correct for reasonable vector fields like this one, is that when h is
small enough, x(h)(t) is very close to the true solution x(t). More precisely, we can hope
that

lim
h→0

x(h)(t)

exists, and if we let x(t) denote the limit, then x(t) is a solution to x′ = F(x) with
x(0) = x0, and that there is no other solution. We will come back to this point later.
For now, look at the graph, and notice how the flow lines “follow the directions” given by
the arrows.* Showing the flow lines of a vector field is a good way to present it visually,
perhaps better than as a field of arrows.

* The graph was generated in Maple. There are some serious problems with the way Maple draws the
vector fields in. The paths, or “flow lines” are supposed to be following the arrows, and so the arrows
should be tangent to the flow lines. This is more or less the case in the lower part of the graph, but not
in the upper right part. What is going on?

It seems that Maple “rounds off” the angles of the arrows, Because of this rounding, the the horizontal

component of the vector field is getting rounded off to zero in the upper right of the graph. It looks like

the vector field pointing straight down in the upper right portion. This is not quite the case, and by

looking at the flow lines – which are computed without inappropriate rounding, we get a better idea of

what directions for motion are actually encoded into the vector field.
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Notice that it looks like the flow lines are all converging on a single point. Indeed, if we
run the algorithm for a longer time, taking enough steps to reach t = 8, we see:

The paths really do seem to be converging to a single point independent of the starting
point, at least in the region in which we choose our starting points. This is an interesting
phenomenon. But we have already covered a great deal of ground. Let’s look back over
what we have learned, and try to clarify our objectives in studying this subject.

2.5: What goals should we set?

When faced with a system of differential equations, it is generally not possible to find a
formula for the solution. We did that in the last subsection when the system was linear;
i.e., when the vector field F(x) was of the form Ax for a constant matrix A.

For the system (2.6), this is just not possible. Just as certain integrals like
∫ x
0
e−t

2/2dx,
cannot be evaluated in terms of the elementary functions, neither can most solutions of
non linear differential equations. Instead they define new functions, just as

∫ x
0
e−t

2/2dx
defines the error function erf(x).

Many of the so–called special functions arise this way: They are the solutions of differ-
ential equations that “come up” all of the time when solving all kinds of problems. You
may have heard of, say, Bessel functions of various kinds. They come from solving such
equations.
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If our goal is not going to be computing explicit formulas, what then will it be? There
are things we can compute that tell us important information about the pattern of motion
described by a vector field.

For example, looking at the last two phase portraits, you see that for the vector field
(2.6), a wide variety of starting points get “swept in” towrds a point near (−1.5,−4.75),
and then they stop there. This is an example of a stable equilibrium point. We will
see in the next section how to calculate them exactly. This one turns out to be exactly
(−5/4,−19/4). We can then give a rather precise description of the motion for staring
points near this equilibrium point: The flow line quickly approaches the equilibrium point
(−5/4,−19/4), and comes to rest there. The point we wish to make is this:

• While vector fields can describe quite complicated motions for which there are no simple
formulas, the long time behavior of the flow lines can be quite simple indeed, and this is
something we can calculate.

In the next section, we will see how to do the calculations that locate any “equilibrium
points” relevant to the long time behavior of the solutions.

If you really need to know further details of the motion – for instance, if you want to
see the actual shape of a particular flow line over a short time – then you must in general
resort to the Euler scheme, or something like it.

There are various refinements Euler scheme, but they all have one thing in common
with the original: They all involve the choice of a time step h > 0 The following graphs
show the paths produced by (2.9) with h = 0.15 on the left and h = 0.01 on the right, and
0 ≤ t ≤ 8. Recall that before we used h = 0.05.

The one on the left with h = 0, 15 is rather differerent from what we found with h = 0, 5.
On the other hand, the one on the right with h = 0.01 is pretty much indistinguishable
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from the one with h = 0.05.
The smaller h is, the better the approximation is. The point is that F is in general not

constant as one moves along the straight line segment joining xn and xn+1. By the time
one has gotten to xn+1, the vector field has changed from F(xn) to F(xn+1). Since you
are using F(xn) as your velocity all the way from xn to xn+1, ignoring the change in the
vector field along the way, you are not really following the intstructions encoded in the
vector field.

However, if h is small, then xn+1 will be close to xn. Hence, if F is nicely continuous, it
will be the case that F(xn) ≈ F(xn+1). To the extent that this is true, it doesn’t matter
that we were using the wrong velocity: While it was not exactly right, it was not too far
off, and the difference would not show up in a graph unless it we drawn on a very, very fine
scale. Hence if h is small enough, we can expect the Euler scheme to give us an accurate
phase portrait.

However, we do not want to take h any smaller than necessary to get the shape of the
flow lines right. The point is, that if you are trying to draw the flow lines for 0 ≤ t ≤ 1,
say, and you choose h = 10−6, it will take 106 steps to reach t = 1. Each step involves
computation, and if we choose h too small, we are wasting a great deal of computational
effort.

There is a balancing act to be performed here. We need to choose h small enough to
get the shape right, but no more, so that we do not waste computational effort. The key
question then is this:

• For a given vector field F, a given starting point x0,and a given final time t, how small
does h have to be for the Euler scheme to produce an accurate phase portrait?

The fact that there is always some value h > 0 that is small enough is contained in the
following theorem, which we state, but do not prove.

Theorem 1 (Existence of flow lines) Let x0 be given, and let Ω be an open set contain-
ing x0. Let R be the distance from x0 to the exterior of Ω. Let F be a vector filed defined
on Ω, Suppose that there are numbers B and C so that for all x in Ω,

|F(x)| ≤ B and ‖JF(x)‖ ≤ C .

Then there is a unique solution to

x′(t) = F(x(t)) with x(0) = x0 (2.10)

that is defined until x(t) reaches the boundary of Ω if it ever does. In any case, this does
not happen for t < R/B, so x(t) is defined for all such t. Moreover, the approximate
solution x(h) produced by the Euler scheme converges to the exact solution:

lim
h→0

x(h)(t) = x(t)

for all times t for which x(t) is defined.
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Exercises

1. Consider the second order differential equation

x′′(t) = −x2(t) + (x2(t))′ − 2x(t) .

Find a vector field F(x) so that this equation is equivalent to the first order system x′(t) = F(x(t)).

2. Consider the second order differential equation

x′′(t) = x2(t)− (x′(t))3 − 3x(t)x′(t) .

Find a vector field F(x) so that this equation is equivalent to the first order system x′(t) = F(x(t)).

3. Bessel’s equation is

x′′(t) =
(m2 − t2)x(t) = tx′(t)

t2
,

where m is a fixed number. The right hand side explicitly involves t, and so you have to use a time
dependent vector field F(x, t) to write this equation as a system. Such systems with a time dependent
vector field are called non autonomous. Find a time dependent vector field F(x, t) so that this equation
is equivalent to the first order system x′(t) = F(x(t)).

4. Find the exact solution of x′(t) = F(x(t)) with x(0) =

[
1
2

]
and F(x) = Ax where A =

[
1 3
0 2

]
.

5. Find the exact solution of x′(t) = F(x(t)) with x(0) =

[
1
2

]
and F(x) = Ax where A =

[
1 3
3 1

]
.

6. Find the exact solution of x′(t) = F(x(t)) with x(0) =

[
1
2

]
and F(x) = Ax where A =

[
1 3
0 1

]
.

7. Consider the vector field F(x) where

F(x) =

[
(x− y)(1− x2)
−y3 − x

]
.

Take x0 =

[
1
1

]
and h = 0.1. Compute the points xn generated by the Euler scheme for n ≤ 10, and plot

an approximate phase portrait based on your computations. Show the vector field F at each of the points
xn and at some nearby points.

8. Consider the vector field F(x) where

F(x) =

[
(x2 − y)(1− x)

3x− y

]
.

Take x0 =

[
1
1

]
and h = 0.1. Compute the points xn generated by the Euler scheme for n ≤ 10, and plot

an approximate phase portrait based on your computations. Show the vector field F at each of the points
xn and at some nearby points.
9. Consider the vector field F(x) where

F(x) =

[
y
−x

]
.

Take x0 =

[
3
4

]
and h = 0.2. The exact solution traces out a circle of radius 5 in the x, y plane.
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(a) Compute the points xn generated by the Euler scheme for n ≤ 20, and plot an approximate phase
portrait based on your computations, and plot an approximate phase portrait based on your computations.
Show the vector field F at each of the points xn. The approximation that you get will not “close” the
circle. Instead, it will “spiral out”.

(b) To understand the spiraling, consider the vector field, but an arbitrary h > 0. Show that if {xn}
is generated using the Euler scheme, then for each n, F(xn) is orthogonal to xn, and the Pythagorean
Theorem yields

|xn+1|2 = (1 + h2)|xn|2 .

Hence {xn} is an increasing sequence.

(c) Let N be the smallest integer with Nh > 2π Then N steps would be required to “close” the circle.
By what we have seen above, it won’t exactly close. But if in our graph the difference between |xN | and
|x0| = 5 is less than about half a pixel width, the flaw will be invisible. If a pixel witdth is 0.05 distance
units, how small must h be so that the path will appear to close in a circle?
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Section 3: Long time Behavior

3.1 Equilibrium points for systems of differential equations

Consider a starting point x0 for which F(x0) = 0. Then if we define x(t) = x0 for all t,
we have x′(t) = 0 for all t, and so x′(t) = F(x(t)) = F(x0) = 0 for all t. In other words,
we have solved the differential equation x′ = F(x) for this initial data. The solution is
very simple: There is no motion at all; the solution remains “in equilibrium” at x0.

Definition Let F be a vector field. Any point x such that F(x) = 0 is an equilibrium
point for the vector field, and the corresponding flow.

Finding equilibrium points is then just a matter of solving the equation F(x) = 0. We
have effective means for doing this – for example, we could use Newton’s method. The
examples that follow here have been chosen so that F(x) = 0 can be solved by simple
algebraic means. This is slightly artificial, but it lets us focus on the new ideas.

Example 1 (Finding Equilibrium Points) Consider the vector field

F(x, y) = (1 + x2 + y2)−1/2
[

(y + x+ 4)(3x− y − 1)
(y + 2x+ 8)(2x− 2y − 7)

]
(3.1)

that was introduced in (2.6) and graphed there. If x =

[
x
y

]
and F(x) = 0 then

(y + x+ 4)(3x− y − 1) = 0 and (y + 2x+ 8)(2x− 2y − 7) = 0 .

This is the case if an only if at least one of the factors in each product is zero. Therefore if y+ x+ 4, then
we also must have either y + 2x+ 8 = 0 or 2x− 2y − 7 = 0. That is, either

x+ y = −4

2x+ y = −8
(3.2)

or
x+ y = −4

2x− 2y = 7
(3.3)

Likewise, if 3x− y − 1 = 0, then x, y must solve either

3x− y = 1

2x+ y = −8
(3.4)

or
3x− y = 1

2x− 2y = 7
. (3.5)

solving these four linear systems, we find all equilibrium points of F.

You easily find that the solution of (3.2) is x = −4, y = 0, that the solution of (3.3) is x = −1/4, y =

−15/4, that the solution of (3.4) is x = − − 7/5, y = −26/5, and finally, that the solution of (3.5) is

x = −5/4, y = −19/4 These are the equilibrium points for this vector field.
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Let F be the vector field from Example 1, and let x0 = −1
4

[
5
19

]
be the fourth equi-

librium point found there. If you look back at the graphs of flow lines for this vector
field that were drawn in the previous section, you see that this appears to be the point of
convergence of the flow lines we drew there. What is going on at this equilibrium point
that makes it “pull in” the nearby flow lines?

3.2 Linearization of a system differential equations

It turns out that a system of differential equations can be “simplified” near an equilib-
rium point. The simplified system is linear, and therefore explicitly solvable. By looking at
the explicit solution of the simplified system – that is, linearized system – we can determine
the pattern of flow lines near the equilibrium point.

To see how this works, let’s consider x′ = F(x) where F is given by (3.1), and the
starting point is x0 + z0. Here x0 is our equilibrium point, and z0 is a small “shift” away
from it. This new point is not an equilibrium point when z0 is small. (The other three
equilibria are not very close).

Let x(t) denote the solution of

x′(t) = F(x(t)) with x(0) = x0 + z0 , (3.6)

and define z(t) by
z(t) = x(t)− x0 . (3.7)

That is, z(t) gives the displacement at time t from the equilibrium position x0. How does
this change with time?

Since x0 is constant,
z′(t) = (x(t)− x0)′ = x′(t) .

From (3.7), x(t) = x0 + z(t). Combining this with (3.7) and (3.6), we have

z′(t) = x′(t) = F(x(t))

= F(x0 + z(t)) .
(3.8)

Now making a first order Taylor approximation,

F(x0 + z(t)) ≈ F(x0) + [JF(x0)]z(t) . (3.9)

Now, since x0 is an equilibrium point, F(x0) = 0, and this simplifies to

F(x0 + z(t)) ≈ [JF(x0)]z(t) . (3.10)

Combining (3.8) and (3.10), we have

z′(t) ≈ [JF(x0)]z(t) . (3.11)
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Making this approximation, and remembering the initial condition z(0) = z0, we obtain
the linear system

z′(t) = [JF(x0)]z(t) with z(0) = z0 . (3.12)

Definition Let x0 be an equilibrium point for the differential equation x′(t) = F(x(t)).
Suppose that F is differentiable at x0. Then the linearization of x′(t) = F(x(t)) near x0

is the linear system
z′(t) = [JF(x0)]z(t) .

To keep the notation simple, let A denote the matrix Jacobian matrix JF(x0). Then
the linearized initial value problem (3.12) is just

z′(t) = Az(t) with z(0) = z0 (3.13)

which has the solution
z(t) = etAz0 . (3.14)

Now, because of the approximations we have made, the curve z(t) in (3.14) is not the
same as the one in (3.7). However, as long a |z(t)| stays small, so that the approximation
in (3.9) is reasonably accurate, these two curves will be approximately equal. Therefore,
using the one from (3.14) in (3.7), we get

x(t) ≈ x0 + etAz0 . (3.15)

This approximation remains good as long as |z(t)| = |etAz0| remains small.

• Therefore, at least in a small neighborhood of an equilibrium point, we can effectively
graph the flow lines of the non linear system x′(t) = F(x(t)) by graphing the flow lines
of its linearization at x0. This is easy because the flow lines if a linear system can be
computed exactly, using the matrix exponential.

Example 2 (Computing a linearization) Let F be the vector field from Example 1, and let x0 be the

equilibrium point found there by solving (3.5); i.e., x0 = −
1

4

[
5
19

]
Next, we work out JF(x0). Doing the computations, we find

JF(x0) =

√
8

√
201

[
−6 2
3/2 −3/2

]
.

Hence we see that the solution of (3.12) is given by

z(t) = etJF(x0)z0 = etAz0

where

A =
√

8/201

[
−6 2
3/2 −3/2

]
. (3.16)
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The linearized system in Example 2 may look ugly on account of the square roots.
However, there is something very, very nice about the matrix A in (3.16): Both of its
eigenvalues are negative. A simple computation shows that the eigenvalues are

−
√

2/201(15±
√

129) .

Since these are distinct, the matrix A can be diagonalized. That is, for some 2 × 2
matrix V ,

A = V

[
µ1 0
0 µ2

]
V −1 .

Therefore,

etA = V

[
etµ1 0

0 etµ2

]
V −1 .

Since both eigenvalues are negative, limt→∞ etµ1 = 0 and limt→∞ etµ2 = 0. Therefore,

lim
t→∞

etA = 0 .

• It follows that because both eigenvalues of A are negative and distinct,

lim
t→∞

etAz0 = 0 ,

no matter what the starting point z0 is. Hence x0 +etAz0 remains in a small neighborhood
of x0 for all time, and the approximation (3.15); i.e.,

x(t) = x0 + εtAx0

remains valid for all t, so that we expect

lim
t→∞

x(t) = x0 . (3.17)

In other words, if we start out at a point close to x0, say x0 + z0 with z0 small, then
we would expect that the solutions x(t) would satisfy limt→∞ x(t) = x0. That is, all flow
liness that start near x0, end up at x0. This is exactly what we saw in our graphs of flow
lines in the previous section. In fact, you see that z0 does not have to be all that small in
this example.

We remark that we have not given a formal proof of anything yet; our conclusions are
based on the approximation (3.9). However, as |z(t)| gets smaller smaller this approxima-
tion becomes more and more accurate. For this reason, (3.17) will hold exactly.
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Let’s draw a phase portrait showing the solutions of (3.12) for the initial data points z0

given by

[
0.1
0.1

] [
0.1
0

] [
0.1
−0.1

] [
0

0.1

] [
0
−0.1

] [
−0.1

0.1

] [
−0.1

0

] [
−0.1
−0.1

]
. (3.18)

These are the eight “compass points” around the origin. The graph showing the flow
lines starting from them is:

Now let’s plot the phase portrait of the true equation x′(t) = F(x(t)) starting from the
eight points x0 + z0 where z0 is given, in succession, by the eight points in (3.18). The
result is
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The only difference is that the pattern of the lines in the second graph is “shifted” from

being centered on the origin to being centered on the equilibrium point −1
4

[
5
19

]
. The

message is this:

• If you want to know what the pattern of flow lines looks like near an equlibrium point,
compute the linearization of the system about the equilibrium point, and graph its flow lines.
What you see is just a shifted version of the pattern of flow lines near the equilibrium point.

Now, let’s apply this method to determine the pattern of flow lines near the other three
equilibrium points.

First consider x0 =
[
−4

0

]
. Computing JF(x0) we find

JF(x0) =
1√
17

[
−13 −13
−30 −15

]
.

The eigenvalues are

µ± = − 14√
17
±
√

23 .

These are about 1.40 and −8.19. In particular, one is positive and one is negative. Let v+

and v− be eigenvectors for µ+ and µ−, and let V = [v+,v−]. Then

A = V

[
µ+ 0
0 µ−

]
V −1 ,
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and so

etA = V

[
etµ+ 0

0 etµ−

]
V −1 .

Since µ+ is positive, etµ+ grows rapidly as t increases, and since µ− is negative, etµ−
shrinks rapidly as t increases. Hence for large values of t, etµ− is negligible with respect
to etµ+ . Hence we have

etA ≈ V
[
etµ+ 0

0 0

]
V −1 .

This matrix definitely does not satisfy limt→∞ etA = 0. In fact, it “blows up” as t tends
to infinity.

Let’s graph the flow lines starting from the eight points x0 + z0 where z0 is given, in
succession, by the eight points in (3.18). Here is the graph:

You see that all of the points get “swept away” from this equilibrium point. (To se the
direction of motion along the flow lines, look at the directions of the nearby arrows in the
phase portrait). In fact, they exit away from it along the line in the direction of v+ which
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is approximately
[
−0.692

1

]
. The line spanned by this vector is the “exit line” from this

equilibrium point: all eight starting points quickly head to this line, and then move away
along it, away from the equilibrium point.

The other two equilibrium points are like this one: At each of them, there is one positive
and one negative eigenvalue. Typical points nearby these equilibrium points are “swept
away” from them along the line spanned by the eigenvector with the positive eigenvalue.

Such points are unstable: If you start at a typical point near them, you are “swept
away”. In contrast, the first point we examined is stable: If you start at a typical point
near them, you are “pulled in”.

The difference between stability and instability of an equilibrium point lies in the eigen-
values of the Jacobian at the equilibrium point: If both eigenvalues are strictly negative,
then the equilibrium point is stable. If you start at a typical point near them, you are
“pulled in”.

On the other hand, if either is strictly positive, then the then the equilibrium point is
unstable. If you start at a typical point near them, you are “swept away”. We will refine
this classification of equilibrium points in the next subsection.

3.3: Stability and eigenvalues

Definition (Stability) An equilibrium point x0 of a vector field F is stable in case there
is an r > 0 so that for all z0 with |z0| ≤ r, the solution of

x′(t) = F(x(t)) with x(0) = x0 + z0

satisfies
lim
t→∞

x(t) = x0 .

The definition is such that if you start the motion close enough to an equilibrium point,
the motion eventually gets “pulled in” to the equilibrium point.

Example 3 (Stable equilibrium) The equilibrium point −
1

4

[
5
19

]
is stable for the vector field F given

by (3.1). So far, we have seen this in pictures. We will soon see how to demonstrate the stability by

explicit computation.

We will now define instability to express the intuitive idea that if you start nearby an
unstable equilibrium point, you can get “swept away” no matter how close you start. To
be precise, we fix some number R > 0, and we will consider x(t) to have been swept away
from x0 if |x(t) − x0| ≥ R. If you can find initial data x0 + z0 that gets swept away for
arbitrarily small z0, then you have what we will call instability.

Definition (Instability) An equilibrium point x0 of a vector field F is unstable in case
there is an R > 0 so that for all r > 0 there is a z0 with |z0| ≤ r such the solution of

x′(t) = F(x(t)) with x(0) = x0 + z0
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satisfies |x(t)− x0| ≥ R for some finite t.

Example 4 (Unstable equilibrium) The equilibrium point x0 =

[
−4

0

]
is unstable for the vector field

F given by (3.1). So far, we have seen this in pictures. We will soon see how to demonstrate the stability

by explicit computation.

The way the definitions are set up, there are equilibrium points that are neither stable
nor unstable.
Example 5 (Neither stable nor unstable) Consider

F(x) =

[
0 y
−x 0

]
=

[
0 1
−1 0

]
x .

Evidently, x = 0 is an equilibrium point. Since this is a linear system; i.e., since F(x) = Ax with

A =

[
0 1
−1 0

]
, the solution of

x′(t) = F(x(t)) with x(0) = z0

is given by etAz0. Now, we have computed etA in the first section, and we found it to be a 2× 2 rotation
matrix for each t. In particular, it does not change the length of z− 0, and so

|x(t)| = |z0|

for all t > 0. We do not have stability since no matter how small r is chosen, we can choose z0 = re1 so
that |z0| = r. We then have |x(t)| = r for all t, and not limt→∞ |x(t)| = 0. So this is not stable.

On the other hand, no matter how small we pick R > 0, if we start at z0 with |z0| < R/2, we have for

the corresponding solution that |x(t)| < R/2 for all t, so initial data this close never gets “swept away”.

Hence this equilibrium point is not unstable either. Such equilibria are sometimes called marginally stable

If the system is linear, then it is easy to determine stability or instability by looking
at eigenvalues. Indeed, consider any linear vector field F(x) = Ax. Then x0 = 0 is an
equilibrium point. Let µ1 and µ2 be the eigenvalues of A. Suppose that A is diagonalizable,
and let v1 and v2 be the corresponding eigenvectors of A. Let V = [v1,v2]. Then

A = V

[
µ1 0
0 µ2

]
V −1 ,

and so

etA = V

[
etµ1 0

0 etµ2

]
V −1 .

It might be that µ1 and µ2 are complex, in which case they are a complex conjugate pair.
That is, there are real numbers a and b so that µ1 = a+ ib and µ2 = a− ib. Since

et(a±ib) = etae±itb

and since |e±itb| = 1, we have that limt→∞ et(a±ib) = 0 if a is strictly negative, and
that limt→∞ et(a±ib) “blows up” if a is strictly positive. Similarly, if µ1 is real, then
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limt→∞ etµ1 = 0 if µ1 is strictly negative, and that limt→∞ etµ1 “blows up” if µ1 is strictly
positive. The same conclusions hold for µ2. Therefore, if the real part of both eigenvalues
are both strictly negative, then

lim
t→∞

etA = V

(
lim
t→∞

[
etµ1 0

0 etµ2

])
V −1 = 0 .

This certainly implies that for all initial data z0, the solution of x′(t) = Ax(t) with
x(0) = z0 satisfies limt→∞ x(t) = 0. Hence in this case, x0 = 0 is a stable equilibrium
point.

On the other hand, if either eigenvalue has a strictly positive real part then etA “blows
up” as t increases. In this case, we can find arbitrarily small initial data z0 for which the
solution of x′(t) = Ax(t) with x(0) = z0 becomes arbitrarily large. Hence in this case,
x0 = 0 is an unstable equilibrium point.

Our analysis was carried out under the assumption that A is diagonalizable. If that is
not the case, one has to use a similar argument based on generalized eigenvectors. The
conclusion is the same, and the result is the following:

Theorem 1 (Stability of linear systems) The equilibrium point x0 = 0 of a linear
vector field F(x) = Ax is stable in case each of the eigenvalues of A has a strictly negative
real part, and is unstable in case at least one has a strictly positive real part

Now the good news is that stability and instability are “robust” properties as we have
defined them. If you change the vector field a little bit, you do not change whether the
motion pulls things in, or sweeps them away. In fact, this is why we left out borderline cases
like the one in Example 5. This means that the approximation that we make in linearizing
a system does not affect the stability or instability, and we can check for these properties
by applying Theorem 1 to the linearization. The hypothesis about second derivatives in
the following theorem is there so that we can apply Taylor’s theorem with remainder to
show that the errors in the linearization are not enough to affect stability. We will not
prove this in detail.

Theorem 2 (Stability of non linear systems) Let x0 be an equilibrium point for a
vector field F. Suppose the entries of F are twice continuously differentiable. Then if each
of the eigenvalues of JF(x0) has a strictly negative real part, x0 is a stable equilibrium
point. If any of the eigenvalues of JF(x0) has a strictly positive real part, then x0 is
unstable
Problems

1. Consider the vector field F(x) where

F(x) =

[
(x− y)(1− x2)
−y3 − x

]
.

Find all equilibrium points, and determine whether they are stable or unstable.

3. Consider the vector field F(x) where F(x) =

[
(x2 − y)(1− x)
−3y + x

]
. Find all equilibrium points, and

determine whether they are stable or unstable.
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3. Consider the vector field F(x) where

F(x) =

[
(x− y)(2y − x)
(3y − x)(x− 1)

]
.

Find all equilibrium points, and determine whether they are stable or unstable.

4. Consider the vector field F(x) where

F(x) =

[
x2 − y2

2y − 3x− b

]
.

Find all equilibrium points, and determine whether they are stable or unstable.
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Section 4: Gradient flow

4.1: Gradient vector fields

If f is any real valued function on IRn, we can define a vector field F on IRn by

F(x) = ∇f(x) .

Definition (Gradient vector field) A vector field F is a gradient vector field if and
only if there is a real valued function f so that for all x, F(x) = ∇f(x). such function f
is called a potential for F.

Since adding a constant to a function does not affect its gradient, if f is a potential,
then so is f + c for any constant c.
Example 1 (Gradient vector field) Consider the function

f(x, y) = −x4 − y4 − 4xy .

Then

∇f(x) = −4

[
x3 + y
y3 + x

]
.

Here is a plot of the of the vector field = ∇f :

If F is a gradient vector field with potential f , then x0 is an equilibrium point of F if
and only if x0 is a critical point of f . Indeed, by the definitions. F(x0) = 0 if and only if
∇f(x) = 0.
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Moreover,
JF = J∇f = Hessf . (4.1)

Since the Hessian is symmetric, the eigenvalues will be real. If x0 is an equilibrium point
of F, and if both eigenvalues of JF = Hessf are positive, then x0 is a local minimum of
the potential f , and is an unstable equilibrium point of F. If both are negative, then x0

is a local maximum of the potential f , and is a stable equilibrium point of F. If one is
positive and the other is negative, then then x0 is a saddle point of the potential f , and is
an unstable equilibrium point of F.
Example 2 (Equilibrium points for gradient flow and critical points) Consider the function

f(x, y) = −x4 − y4 − 4xy as in the previous example. Then ∇f(x) = −4

[
x3 + y
y3 + x

]
. At a critical point,

we must have
x3y = 0 and y3 + x = 0 .

You can easily check that x0 =

[
−1

1

]
and x1 =

[
1
−1

]
are critical points of f . With a bit more thought,

you can see that they are the only critical points. At both of these critical points we have

J∇f = Hessf = −4

[
3 1
1 3

]
.

The eigenvalues are −16 and −8. These are both strictly negative. Hence both x0 and x1 are local maxima
of f , and stable equilibrium points for the vector field F = ∇f .

If you look back at the field plot that we produced above, you will see the arrows pointing in toward

x0 and x1 near each of them. This is the pictoral signature of stability.

We can understand this connection between minima and maxima on the one hand,
and stable and unstable equilibrium points better if we think in terms of the flow lines
generated by solving

x′(t) = ∇f(x(t)) . (4.2)

That is, we take F = ∇f . This is the equation for steepest ascent gradient flow generated
by the potential f .

The direction of flow is is the direction of the gradient, which is to say: straight uphill.
Indeed, if x(t) satisfies (4.2), we have from the chain rule that

d
dt
f(x(t)) = x′(t) · ∇f(x(t))

= ∇f(x(t)) · ∇f(x(t))

= |∇f(x(t))|2 .

As you move along the flow lines, the value of f steadily increases. If you arrive at a
local maximum, then you must stop there, since if you move, f must increase, but you are
already at a local maximum. If you start near, but not exactly at, a local maximum, the
flow will carry you straight uphill to the local maximum. This is the reason that strict
local maximum critical points of f are stable equilibrium points of F = ∇f .
Example 3 (Flow lines for steepest ascent) Again, consider the function f(x, y) = −x4 − y4 − 4xy.

1-64



Here are the flow lines generated by starting at the eight initial points

[
−2
−1

] [
−2

0

] [
−2

1

] [
0
−2

] [
0
2

] [
2
−1

] [
2
0

] [
2
1

]
and running the flow for 0 ≤ t ≤ 2

Each of the flow lines has converged on one or the other of the equilibrium points x0 =

[
−1

1

]
and

x1 =

[
1
−1

]
. It may look like there is a smooth curve running from

[
−2
−1

]
to

[
−2

1

]
that passes through

x0, but this is not the case: You can tell that the line flow in and not through by looking at the directiosn
of the nearby arrows. They all point inwards. Hence what you really have is two flow lines approaching x0

from opposite sides. As they approach x0, they progress along the flow line slows down to a crawl. They
crawl on up toward the top of the hill to stop there – it is an equilibrium point. They do not proceed
down the other side of the hill.

On the other hand if you start near, but not exactly at, a local minimum, the flow will
carry you straight uphill away from the local mnimum. This is the reason that strict local
minimum critical points of f are unstable equilibrium points of F = ∇f .

On the other hand, consider the equation

x′(t) = −∇f(x(t)) . (4.3)

That is, we take F = −∇f . This is the equation for steepest descent gradient flow generated
by the potential f .
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The direction of flow is is opposite the direction of the gradient, which is to say: straight
downhill. Indeed, if x(t) satisfies (4.2), we have from the chain rule that

d
dt
f(x(t)) = x′(t) · ∇f(x(t))

= −∇f(x(t)) · ∇f(x(t))

= −|∇f(x(t))|2 .

As you move along the flow lines, the value of f steadily decreases. If you arrive at a
local minimum, then you must stop there, since if you move, f must decrease, but you are
already at a local minimum. If you start near, but not exactly at, a local minimum, the
flow will carry you straight downhill to the local minimum. Thus, strict local minimum
critical points of f are stable equilibrium points of = −∇f .

These observations can be used to local maxima and minima: Suppose that we are
trying to find local minima of f(x). We can pick a starting guess x0, and then solve

x′(t) = −∇f(x(t)) with x(0) = x0 . (4.4)

When the flow line reaches an equilibrium point and stops, assuming it does not just “flow
away” forever, the stopping point will be an equilibrium point. In the same way, one can
look for local maxima using steepest ascent gradient flow.

By itself, this would not be a very good method, since under either type of gradient
flow |x′(t)| = |∇f(x(t))| is small whenver x(t) is close to a critical point. That is, the flow
carries you toward the critical point, but it slows down as it gets close, and the closer it
gets, the more it slows down. Once the slowing down has occured though, one can switch
to Newton’s method. Recall that Newton’s method requires a good starting guess. What
we can use gradient flow for then is to find the starting guess.

•While gradient flow “slows down” in the neighborhood of a critical point, it can be used to
find good starting guesses for Newton’s method in the search for local minima or maxima.
If you are looking for local minima, run steepest descent gradient flow until it slows down
to a crawl, and then use the final point as a starting point for Newton’s method. If you are
looking for local maxima, run steepest asscent gradient flow until it slows down to a crawl,
and then use the final point as a starting point for Newton’s method.

4.2: Perpendicular gradient flow and level curves

Let f be a function on IR2, and consider the perpendicular gradient field

F(x) = (∇f(x))⊥ . (4.5)

If x(t) satisfies
x′(t) = F(x(t) with x(0) = x0 , (4.6)
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we have from the chain rule that

d
dt
f(x(t)) = x′(t) · ∇f(x(t))

= (∇f(x(t)))⊥ · ∇f(x(t))

= 0 .

That is, f is constant along the flow line through x0 of this vector field. This means that
the flow line is (part of) a level curve of f .

You may or may not get the whole level curve this way. For instance, if there is a
critical point of f along the level curve, that at this critical point ∇f = 0, and hence
so does (∇f)⊥. Therefore, the flow stops at this critical point; it cannot pass beyond it.
If you follow the flow backwards, you continue tracing out the level curve. If there is a
critical point in this direction, you will grind to a halt as you approach it. What you will
have traced out is an arc of the level curve with critical points at the ends.
Example 4 (Level curves and perpendicular gradient flow) Again, consider the function f(x, y) =
−x4 − y4 − 4xy. You can easily check that

f(−
√

2,
√

2) = f(
√

2,−
√

2) = 0

Hence the two points
√

2

[
1
−1

]
and
√

2

[
−1

1

]
belong to the level curve given implicitly by f(x, y) = 0.

If we start from the first of these, and draw the flow line for perpendicular gradient flow through this
point for −1 ≤ t ≤ 1, we find:
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The ends of the path, continued for all t, would be in the critical point

[
1
1

]
. We never get around to

the point
√

2

[
−1

1

]
on this arc of the path. But using this as a satrting point, we pick up the other arc

of the level set:

what we have seen in this example is very useful:

• By solving the perpendicular gradient flow equation (4.6), you find an arc of the level
curve of f through x0. The endpoints of the arc, if any, will be critical points of f .

This observation allows us to use Euler’s method to find level curves. It also has other
uses. for example, we can use it to deduce a formula for the curvature of an implicitly
defined curve.

Let f be a given function on IR2 , and let x0 be a given point in IR2. Let x(t) be
the solution of (4.6), So that this is the level curve of f through x0. We know that the
curvature of this curve at x0 is given by

κ =
|x′′(0) · (x′(0))⊥|

|x′(0)|3
. (4.7)

We compute, using the chain rule,

x′′ = (x′)′ =
(

(∇f(x))⊥
)′

= J(∇f)⊥x′(t)

and of course
(x′)⊥ = (∇f(x))⊥⊥ = −∇f(x) .
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To carry our the computation in an intelligible manner, it helps to have a simpler
notation for partial derivatives. A common practice is to use subscripts to denote partial
derivatives. We define fx to be ∂f/∂x and fy to be ∂f/∂x:

fx =
∂f

∂x
and fy =

∂f

∂y
.

Likewise,

fxx =
∂2f

∂x2
fxy =

∂2f

∂x∂y
and fyy =

∂2f

∂y2
.

In this notation, (∇f)⊥ =
[
−fy
fx

]
and so

J(∇f)⊥ =
[
−fyx −fyy
fxx fxy

]
.

Therefore,

x′′ =
[
J(∇f)⊥

]
(∇f(x))⊥ =

[
−fyx −fyy
fxx fxy

] [
−fy
fx

]
=
[

fyxfy − fyyfx
−fxxfy + fxyfx

]
.

Taking the dot product with (x′)⊥ = −∇f , we have

x′′ · (x′)⊥ =
[

fyxfy − fyyfx
−fxxfy + fxyfx

]
·
[
fx
fy

]
= 2fxyfxfy − fxx(fy)2 − fyy(fx)2 .

Finally, we have that the curvature κ is obtained by dividing this by |∇f |3. Of course,
this is not possible at a critical points, but then in general, it does not make sense to
talk about “the level curve of f” through a critical point. Away from critical points, the
implicit function theorem guarantees that it does make sense.

This gives us the following result:

Theorem 1 Let f be a twice continuously differentiable function. Then at any point x0

that is not a critical point, the curvature κ of the level curve of f through x0 is given by

κ =

∣∣2fxyfxfy − fxx(fy)2 − fyy(fx)2
∣∣

((fx)2 + (fy)2)3/2
, (4.8)

evaluated at x0

Example 5 Let f(x, y) = x2 + y2. Then fx = 2x, fy = 2y, fxx = fyy = 2, and fxy = 0. Hence

2fxyfxfy − fxx(fy)2 − fyy(fx)2 = −2(2x)2 − 2(2y)2 = −8|x|2
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while
((fx)2 + (fy)2)3/2 = 8|x|3 .

Hence the formula gives
κ = 1/|x| .

Notice that that level curve of f through x is the circle of radius r = |x|, and we have computed earlier,

using an explicit parameterization, that the curvature of a circle of radius r is 1/r. So the result we have

obtained from (4.8) is what it should be.

Theorem 1 is particularly useful when an explicit parameterzation is cumbersome or
impossible to find. To use (4.7), you must have a parameterization of the level curve.
Formula (4.8) sidesteps this difficulty.

Example 6 Let f = −x4 − y4 − 4xy as in our earlier examples. Computing

2fxyfxfy − fxx(fy)2 − fyy(fx)2

((fx)2 + (fy)2)3/2
,

we find

10x3y3 + x4 + y4 − 2xy + 3x2y6 + 3 y2x6

(x6 + 2x3y + y2 + y6 + 2 y3x+ x2)3/2
(4.9)

As we have seen above, the points
√

2

[
1
−1

]
and
√

2

[
−1

1

]
belong to the level curve given implicitly

by f(x, y) = 0, which we have already plotted above.
Evaluating the ratio (4.9) at either of them, we find that the curvature is 7/2. Hence the radius of

curvature at these points is 2/7, which, if you inspect the graph, looks pretty reasonable.
Notice that the curvature function (4.9) is not continuous at the origin. For x and y both very close to

zero, we can neglect everything except the terms involving the least total power in x and y:

10x3y3 + x4 + y4 − 2xy + 3x2y6 + 3 y2x6

(x6 + 2x3y + y2 + y6 + 2 y3x+ x2)3/2
≈

−2xy

(x2 + y2)3/2
.

If one approaches the origin tangential either the line x = 0 or y = 0, the limit of the ratio is zero since
the numerator vanishes identically. This is what our level curves do, and if you look at the graph, the level
curve does indeed seem to have zero curvature near the origin.

However, nearby, there are points through which the level curve has very high curvature. Consider for

example

[
0.01
0.01

]
. Evaluating (4.9) at this point we find the curvature to be about 70.682.... Look at the

arrows, and try to visualize this level curve so that you see its large curvature.

Problems

Problem 1 Let f(x, y) = x3 + y3 − 4xy. Let F(x) = ∇f(x).

(a) Find all of the equilibrium points of f and determine whether they are stable or unstable.

(b) Use Euler’s scheme and perpendicular gradient flow to graph the level curve of f(x, y) passing through

x0 =

[
2
2

]
.

(c) Compute the curvature of the level curve of f(x, y) passing through x0 =

[
2
2

]
at x0.

Problem 2 Let f(x, y) = x4 + y4 − 2x2y2. Let F(x) = ∇f(x).

(a) Find all of the equilibrium points of f and determine whether they are stable or unstable.
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(b) Use Euler’s scheme and perpendicular gradient flow to graph the level curve of f(x, y) passing through

x0 =

[
1
1

]
.

(c) Compute the curvature of the level curve of f(x, y) passing through x0 =

[
1
1

]
at x0.

Problem 3 Let f(x, y) = (x2 + y2)2 − 2(x2 − y2). Let F(x) = ∇f(x).

(a) Find all of the equilibrium points of f and determine whether they are stable or unstable.

(b) Use Euler’s scheme and perpendicular gradient flow to graph the level curve of f(x, y) passing through

x0 =

[√
2

0

]
.

(c) Compute the curvature of the level curve of f(x, y) passing through x0 =

[√
2

0

]
at x0.

Problem 4 Explain why a critical point of perpendicular gradient flow is never stable.
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Section 5: Rotations and Rigid Body Motion

5.1: Rotations in IR3 and the orientation of rigid body

Imagine a solid, rigid object moving in three dimensional space. To keep the picture
simple, suppose the object is “box shaped”. Here is a picture showing the box shaped
object at two times: t = 0 and t = 1:

As it moves, the box carries with it a “reference frame” of three unit vectors u1, u2

and u3. Their common origin is some “reference point” b in the rigid body. Here we
have chosen a particular corner. One might well choose the center of mass, or any other
particular point.

The vectors u1, u2 and u3 provide a basis that can be used to locate any point in the
rigid body relative to b. Suppose that a point p in the body is given by

p = b + αu1 + βu2 + γu3 .

The vector

αβ
γ

 describes the vector p relative to the reference point b, and is called the

body coordinate vector of p.
If you know the body coordinates of key points in the body – say the vertices of the

cube – and you know the reference frame – b, together with u1, u2 and u3, you know
eveything about how the body is situated in IR3.

The important fact about this description is that as the object moves, b, u1, u2 and u3

change, the body coordinates α, β and γ do not. This is what is means for a body to be
“rigid”: As the body moves, the points in it move, but the distances between them do not
change – there is no stretching or compression. Therefore, if at time t = 0 we know the
body coordinates (α, β, γ) of enough points p in the body relative to the frame {u1,u2,u3}
centered on b, and if we know how {u1,u2,u3} and b evolve in time, we can reconstruct
the exact configuration of the body at every time t in the future.
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This is good news: No matter how many key points we need to describe a rigid body,
we do not need to keep track their individual motion. We just need to keep track of the
motion of b, u1, u2 and u3.

• The essential data required to describe the motion of any rigid body in IR3 is the location
of a base point b, together with an orthonormal basis of vectors {u1,u2,u3}.

The choice of the orthonormal basis that we will embed into the rigid body at t = 0 is
somewhat arbitrary. But it will be convenient to impose one particular requirement: We
require that the orthonormal basis {u1,u2,u3} be right handed.

In mathematical terms, an orthonormal basis {u1,u2,u3} is right handed if and only if

u3 = u1 × u2 .

For any orthonormal basis {u1,u2,u3}, u1 × u2 = ±u3 since u1 × u2 is a unit vector
orthogonal to both u1 and u2. There are only two of these: ±u3. If u3 = u1 × u2, the
basis or right handed, and otherwise it is left handed. The following picture explains the
terminology:

If you can arrange your thumb, index and middle fingers to point along the directions
of an orthonormal basis {u1,u2,u3} as in the picture, so that you index finger points in
the direction of u1, and your middle finder points in the direction of u2, and your thumb
points in the direction of u3, then that basis is right handed, or else you are very double
jointed.
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We can express the fact that {u1,u2,u3} is a right handed orthonormal basis in terms
of the matrix U = [u1,u2,u3] as follows:

First, the fact that {u1,u2,u3} is orthonormal is equivalent to the fact that

U tU = I .

Indeed,
(U tU)i,j = (row i of U t) · (column j of U)

= (column i of U) · (column j of U)

= ui · uj

.

If {u1,u2,u3} is orthonormal, ui · uj = 1 if i = j, and 0 if i 6= j, and vice–versa. This
means that U tU = I if the columns of U are orthonormal and vice–versa.

Next, the relation between the determinant and the cross product means that

det([u1,u2,u3]) = u1 × u2 · u3

= u3 · u3

= 1 .

Hence, det(U) = 1 if U is right handed, and det(U) = −1 if U is left handed.
This motivates the study of 3 × 3 matrices Q with the properties that QtQ = I and

det(Q) = 1. We make a definition:

Definition A 3× 3 rotation matrix is a 3× 3 matrix Q satisfying

QtQ = I and det(Q) = 1 . (5.1)

The reason for the name is this: The transformation of IR3 induced by every 3×3 matrix
Q such that QtQ = I and det(Q) = 1 is a rotation about some axis in IR3. In the next
subsection we explain this relation between right handed orthonormal bases and rotations.
There are some things about rotation matrices that follow easily from the definition (5.1).

Theorem 1: Let Q be any 3× 3 rotation matrix. Then Q is invertible, and Q−1 is also
a rotation matrix. Moreover, the product of any two rotation matrices is again a rotation
matrix.

Proof: If Q is a rotation matrix, QtQ = I, so Qt is the left inverse of Q. But since Q is
a square matrix, this means that Qt is the inverse of Q. Now we check that Qt satisfies
(5.1): Sine taking the transpose does not change the determinant, det(Qt) = det(Q) = 1.
Also, since Q is the inverse of Qt, (Qt)tQt = QQt = I. Hence (5.1) is satisfied, and Qt is
also a rotation.

Next, let Q1 and Q2 be two rotation matrices. Then

det(Q1Q2) = det(Q1) det(Q2) = 1 ,
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and
(Q1Q2)t(Q1Q2) = Q2(Qt1Q1)Q2 = Qt2Q2 = I ,

so that Q1Q2 satisfies (5.1).

We also recall an important property of rotation matrices: For any two vectors u and
v in IR3, and any rotation matrix Q,

Qu×Qv = Q(u× v) . (5.2)

To see this, let w be any vector in IR3, and use the relation between the cross product and
the determinant:

Qu×Qv ·Qw = det([Qu, Qv, Qw])

= det(Q[u,v,w])

= det(Q) det([u,v,w])

= det([u,v,w])

= u× v ·w .

Therefore, Qt(Qu×Qv) ·w = u×v ·w for all w in IR3. This means that Qt(Qu×Qv) =
u× v, so that (5.2) holds.

5.2: Rotations in IR3 from a geometric point of view

The definition of rotation matrices that we gave in the last section was completely
algebraic. What does it have to do with our geometric understanding of rotations in IR3?

Rotations, considered as transformations of IR3 are prime examples of “rigid transfor-
mations of IR3”:

Definition (Rigid transformation of IR3) A transformation T from R3 to R3 is rigid
in case for any x and y in R3, we have

|T (x)− T (y)| = |x− y| . (5.3)

That is, the transformation T preserves the distance between any pair of points. Such
a transformation is called “rigid” since you if you connected x and y by an iron bar, the
same iron bar, without any stretching, would connect T (x) and T (y).

Notice we are not assuming that T is a linear transformation. Our assumption (5.3) is
geometric, and not algebraic. However:

Theorem 2 (Rigid transformations of IR3) Let T be any rigid transformation of IR3.
Then there is an orthogonal matrix U and a vector b so that for all x in IR3,

T (x) = Ux + b .

In fact, b = T (0), and and the ith column of U , ui, is given by T (ei)− T (0).
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We see from the theorem that a rigid transformation is linear if and only if T (0) =
0, in which case we have T (x) = Ux. If T (0) 6= 0, then we can always define a new
transformation T̃ by

T̃ (x) = T (x)− T (0) .

Then T̃ (x) − T̃ (y) = T (x) − T (y), so T̃ is also a rigid transformation, and it does have
the property that T̃ (0) = 0. If we can prove that T̃ (x) = Ux for some orthogonal matrix
U , and we define b = T (0), then we have T (x) = T̃ (x) + b = Ux + b. Hence it suffices to
prove the theorem under the additional assumtion that T (0) = 0.

Proof: Under the assumption that T (0) = 0, T preserves the length of vectors: For any
x in IR3,

|T (x)| = |T (x)− T (0)| = |x− 0| = |x| .

Moreover, T preserves dot products: For any x and y in R3,

|T (x)− T (y)|2 = |T (x)|2 + |T (y)|2 − 2T (x) · T (y)

= |x|2 + |y|2 − 2T (x) · T (y)

where we have used the fact that T preserves lengths of vectors. But

|x− y|2 = |x|2 + |y|2 − 2x · y

and since |T (x)− T (y)| = |x− y|, we conclude from the last two equations above that

T (x) · T (y) = x · y .

For each i with 1 ≤ i ≤ 3, define ui by

ui = T (ei) .

Then since T preserves lengths and dot products, {u1,u2,u3} is an orthonormal set of
vectors in IR3.

Therefore, U = [u1,u2,u3] is an orthogonal matrix, and so U t is the inverse of U . In
particular, UU t = I.

Hence for any vector x in Rn,

T (x) = (UU t)T (x)

= U(U tT (x))

= U

u1 · T (x)
u2 · T (x)
u3 · T (x)


= (u1 · T (x))u1 + (u2 · T (x))u2 + (u3 · T (x))u3 .
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But since T preserves dot products,

ui · T (x) = T (ei) · T (x) = ei · x = xi

for each i. Hence
T (x) = x1u1 + x2u2 + x3u3 .

Then with U = [u1,u2,u3], we have that T (x) = Ux.

Now, if T is any rotation of IR3, T certainly satisfies (5.3), and not only is T (0) = 0,
but T leaves an entire line through the origin in place. This line ` is called the axis of
rotation. Hence there is a 3× 3 orthognal matrix Q so that T (x) = Qx. Any vector x can
be decomposed into the sum of its components in x‖ ` and x⊥ in `⊥: x = x‖ + x⊥. Since
x‖ is fixed by Q,

Qx = Qx‖ +Qx⊥

= x‖ +Qx⊥ .

Qx⊥ is what you get by rotating x⊥ in the plane `⊥ through some angle θ that can always
be chosen in the range 0 ≤ θ ≤ π by rotating one way or the other.

We are now ready to make a connection between our algebraic definition of rotation
matrices (5.1), and our geometric “picture” of what a rotation is. We have already ex-
plained that if a transformation T of IR3 is a rotation, it is rigid, and therefore there is
an orthogonal matrix Q so that T (x) = Qx for all x. This explains the QtQ = I part of
(5.1), but what about the det(Q) = 1 part?

This can be explained by thinking in terms of the rotation process leading up to Q. For
each t with 0 ≤ t ≤ θ, let Q(t) denote the rotation about ` through the angle t in the
same sense as Q. When t = 0, there is no rotation at all, and so Q(0) = I, the identity
matrix. When t = θ, we are rotating through the full angle θ, and so Q(θ) = Q. For values
of t in between, we are rotating by some angle in between. It is intuitively clear that as
t increases from 0 to θ, the rotation Q(t) continuously interpolates between I and Q – it
describes a rotation process that builds Q up over time.

Now, for each t, Q is an orthogonal matrix and so detQ(t) = ±1. Also, since the entries
of Q(t) depend continuously on t, so does detQ(t). After all, the determinant is just a sum
of products of the entries. To see that det(Q) = +1, note that detQ(0) = detI = +1. Now
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a continuous function of t cannot jump from +1 to −1. Since it starts at +1, it must stay
at +1. Hence detQ(t) = +1 for all t. In particular, detQ = 1.

We now see that if a transformation T of IR3 is a rotation, then T (x) = Qx for some
matrix Q satisfying (5.1). That is, every rotation in IR3 is given by a matrix Q satisfying
(5.1).

It remains to show the converse: That is, if Q is a matrix satisfying (5.1), and we define
a transformation T of IR3 by T (x) = Qx, then T is the rotation through some angle θ
about some axis `. This is a theorem, due to Euler, who proved it in 1752 in the course of
an investigation of rigid body motion. In the next subsection, we explain why it is true,
and how to compute θ and `.

5.3: Euler’s Theorem

We will prove Euler’s Theorem in two steps. The first is a lemma that will give us the
axis of rotation:

Lemma 1 Let Q be any 3 × 3 matrix satisfying (5.1). Then 1 is an eigenvalue of Q. If
Q 6= I, the corresponding eigenspace is exactly one dimensional.

Proof: Let Q be any 3×3 rotation matrix. Then det(Qt) = 1, and so, since Q is invertible,
with Q−1 = Qt,

det(Q− I) = det(Qt)det(Q− I)

= det(QtQ−Qt)

= det((I −Q)t)

= det((I −Q)) .

But (I −Q) = (−I)(Q− I) and det(−I) = (−1)3 = −1, so we conclude that

det(Q− I) = −det(Q− I) . (5.4)

This means that det(Q− I) = 0, and hence 1 is an eigenvalue of Q.
Since 1 is an eigenvalue of Q, the corresponding eigenspace is always at least one dimen-

sional. Suppose it is at least two dimensional. Let u1 and u2 be two orthonormal vectors
in the eigenspace, and let u3 = u1×u2. Then {u1,u2,u3} is a (right handed) orthonormal
basis of IR3. Then, by (5.2),

Qu3 = Q(u1 × u2) = Qu1 ×Qu2 = u1 × u2 = u3 .

Therefore, Q[u1,u2,u3] = [Qu1, Qu2, Qu3] = [u1,u2,u3]. Letting U = [u1,u2,u3], we
have QU = U . Since U is invertible (it is a rotation), this means Q = I.

Let Q be any rotation with Q 6= I. Let v be any eigenvector of Q with eigenvalue 1.
Consider the line ` given parametrically by x(t) = tv. This line is the eigenspace of Q
corresponding to the eigenvalue 1. For any t, Q(tv) = tQv = tv, so points on this line are
left unchanged by Q. This is the axis of rotation.
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• Finding the line ` fixed by Q is essentially an eigenvalue problem

Definition Let Q be any 3 × 3 rotation matrix with Q 6= I. Then the line through the
origin that is the eigenspace of Q with eigenvalue 1 is called the axis of rotation of Q. The
plane through the origin orthogonal to this line is called the plane of rotation.

Example 1 (Finding the axis and plane of rotation) Let Q =
1

3

[
1 2 2
2 1 −2
−2 2 −1

]
. As you can easily

check, Q is a rotation. To find the vectors v with Qv = v, we form

Q− I =
1

3

[−2 2 2
2 −2 −2
−2 2 −4

]
.

By what we just saw, this matrix has a non zero kernel. We could solve for it by row reduction, but this

is a particularly simple case: The second column of Q − I is the opposite of the first column, and so the

kernel of Q− I is spanned by

[
1
1
0

]
. The line fixed by Q is the line through this vector and the origin; this

is the axis of rotation of Q. Notice that the orthogonal complement to this line is the plane consisting of

vectors

[
x
y
z

]
satisfying x+ y = 0, and hence this is the equation for the plane of rotation.

Theorem 3 (Euler’s Theorem) Let Q be any 3 × 3 matrix satisfying (5.1). Then
there is an orthonormal basis {u1,u2,u3} of IR3 so that in this basis, the matrix of the
transformation induced by Q has the form cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

 (5.5)

for some angle θ.

The matrix

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 clearly describes a rotation through an angle θ

about the third axis. Now, the matrix in (5.5) represents the same transformation of
IR3 as does Q. It is different as a matrix because it describes this transformation using
a different basis, but the transformation is the same. Hence Q also describes a rotation
through an angle θ about the third axis in the basis; i.e., line along `, which is the line
through the origin and u3. Thus, Euler’s Thoerem, as stated, does indeed imply that every
3× 3 matrix Q satsifying (5.1) induces a roation of IR3 through some angle θ about some
axis `.

Proof of Theorem 3: Let {u1,u2,u3} be an orthonormal basis of IR3 in which u3 is an
eigenvector of Q with eigenvalue 1. The action of Q on these basis vectors is particularly
simple. First, since Qu3 = u3,

Qu1 · u3 = Qu1 ·Qu3 = u1 · u3 = 0

1-79



and likewise Qu2 ·u3 = 0. Hence Qu1 and Qu2 are linear combinations of u1 and u2 alone.
That is, for some numbers a, b, c and d,

Qu1 = au1 + bu2 and Qu2 = cu1 + du2 , (5.6)

Let U = [u1,u2,u3]. The matrix with respect to the basis {u1,u2,u3} for the transor-
mation of IR3 induced by Q is the matrix T = U−1QU = U tQU .

From the fundamental formula for matrix multiplication,

QU = Q[u1,u2,u3]

= [Qu1, Qu2, Qu3]

= [au1 + bu2, cu1 + du2,u3]

= [u1,u2,u3]

 a c 0
b d 0
0 0 1

 = U

 a c 0
b d 0
0 0 1

 .

Hence, defining T = U tQU , T =

 a c 0
b d 0
0 0 1

.

Since T is a product of orthognal matrices, it is orthogonal, and so T tT = I Moreover,
det(T ) = det(U t)det(Q)det(U) = (det(U))2 = 1, and so T is itself a rotation matrix.

Since the columns of T are othonormal,
[
a
b

]
and

[
c
d

]
a unit vector in IR2. Any unit

vector in IR2 can be written as
[

cos(θ)
sin(θ)

]
for some uniquely determined angle θ in [0, 2π).

Hence we can write
[
a
b

]
=
[

cos(θ)
sin(θ)

]
.

There are only two unit vectors in IR2 orthogonal to
[

cos(θ)
sin(θ)

]
, namely

[
− sin(θ)

cos(θ)

]
and

−
[
− sin(θ)

cos(θ)

]
. It must be that

[
c
d

]
is one of these. Which one is it? With the first

choice, det(T ) = cos2(θ) + sin2(θ) = 1, while with the second, we would have det(T ) =

− cos2(θ)− sin2(θ) = −1, and this is impossible. Therefore
[
c
d

]
=
[
− sin(θ)

cos(θ)

]
, and so

T =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .
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We have now fully justified the use of the terminology “rotation matrix” for a 3 × 3
matrix Q satsifying (5.1). Every rotation is given by such a matrix, and the transformation
of IR3 induced by every such matrix is a rotation. In the next subsection, we will explain
how to compute the angle of rotation.

5.4: The angle and direction of rotation

Consider again our diagram showing a rotation through an angle θ about an axis `:

The vector z is carried into the vector Qz by a rotation through an angle θ that is
clockwise when viewed as sown. However, the same result could have been obtained with
a counterclockwise rotation through an angle 2π − θ. Which one shall we call the angle of
rotation?

The standard convention is to define the angle of rotation θ so that it satisfies

0 ≤ θ ≤ π .

One reason is that this makes θ easy to compute. Indeed, since Q is similar to the matrix

T =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ,

and since similar matrices have the same traces, it follows that

tr(Q) = tr(T ) = 1 + 2 cos(θ) .

In other words,

cos(θ) =
tr(Q)− 1

2
. (5.7)

The fact that cos(θ) is well defined is not in conflict with the fact that we need a convention
for determining θ itself. Indeed, cos(θ) = cos(2π−θ) for all θ. However, since the arccosine
function cos−1 takes its values in [0, π], the convention we have chosen gives us the formula:

θ = cos−1

(
1 + tr(Q)

2

)
. (5.8)
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Example 2 (Finding the angle of rotation) Let Q =
1

3

[
1 2 2
2 1 −2
−2 2 −1

]
as in Example 1. Evidently

tr(Q) = 1/3, so (tr(Q)− 1)/2 = −1/3. Therefore, (5.7) gives

θ = arccos(−1/3) .

Next, there are two unit vectors in `. In other words, there are two unit normal vectors to
the plane of rotation. We will single one of these out and call it u, the direction of rotation.
As long as the angle of rotation is neither 0 nor π, the rotation will look clockwise when
viewed from one side of the plane of rotation, and counterclockwise when viewed from the
other. We define u so that it points to the side from which the rotation appears to be
counterclockwise.

It is easy to give a formula for u: Let v be any unit vector in the plane of rotation.
Then Qv is another unit vector in the plane of rotation. By the right hand rule, v ×Qv
is a vector whose direction is orthogonal to the plane of rotation, and so that if you line
your right hand up so that your thumb points along this direction, the fingers of your right
hand curl in the direction of the rotation as it carries v into Qv. As you can see, this is
counterclockwise.

By the properties of the cross product, the magnitude of v ×Qv is sin(θ). If θ = 0 or
if θ = π, then sin(θ) = 0, and the direction vector is not defined. Otherwise it is given by

u =
1

sin(θ)
v ×Qv . (5.9)

We can now give a “right hand rule” description of the rotation Q. If you grasp the axis
of rotation with your right hand so that your extended thumb points in the direction of
rotation u, then curling your fingers gives the sense of the rotation; Q rotates by the angle
θ about the axis of rotation ` in this sense. We see that u and θ are all the information
we need to specify a rotation matrix Q. Once you know u3 and θ, you know, at least in
geometric terms, how Q transforms any vector. In the next section, we shall see how to
explicitly reconstruct Q from θ and u.
Example 3 (Finding the direction of rotation) Let Q be the orthogonal matrix studied in Examples
1 and 2.

We found in Example 1 that the axis of rotation of Q is the line through w =

[
1
1
0

]
and the origin.

Clearly the vector e3 =

[
0
0
1

]
is orthogonal to w, and hence is a unit vector in the plane of rotation.

Hence we choose v = e3. We compute Qv =
1

3

[
2
−2
−1

]
, and v ×Qv =

2

3

[
1
1
0

]
. Normalizing this vector,

we find u =
1
√

2

[
1
1
0

]
.

Exercises
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In the Exercises 1.1 through 1.5, let Q1, Q2, Q3 and Q4 be the following rotation matrices:

Q1 =
1

9

[
1 8 4
4 −4 7
8 1 −4

]
Q2 =

1

75

[−23 −14 70
−14 73 10
−70 −10 −25

]
Q3 =

1

45

[
35 −20 −20
4 35 −28
28 20 29

]
Q4 =

1

117

[
77 −68 −56
4 77 −88
88 56 53

]
.

5.1 Check that Q1 is indeed a rotation matrix. Then, find the angle of rotation θ and direction of rotation
u for Q1. Also, find an equation for the plane of rotation.

5.2 Check that Q2 is indeed a rotation matrix. Then, find the angle of rotation θ and direction of rotation
u for Q2. Also, find an equation for the plane of rotation.

5.3 Check that Q3 is indeed a rotation matrix. Then, find the angle of rotation θ and direction of rotation
u for Q3. Also, find an equation for the plane of rotation.

5.4 Check that Q4 is indeed a rotation matrix. Then, find the angle of rotation θ and direction of rotation
u for Q4. Also, find an equation for the plane of rotation.

5.5 Let Q be any 3× 3 rotation matrix. Explain why the cross product of any two non proportional rows
of Q − I is an eigenvector of Q with eigenvalues 1. Use this observation to compute the axis of rotation
for Q1 and Q2 above.

5.6 (a) Using Maple, Matlab, or some such program, generate a random 3× matrix A. Find a QR
decomposition of A, and compute det(Q). If the result is +1, then Q is a rotation. Otherwise, −Q is a
rotation. Take the rotation generated this way, and compute the angle of rotation.

(b) Repeat the procedure in part (a) twenty times, and graph the results. does it look like the random
angles are uniformly distributed over the interval [0, π] or not?

5.7 Let θ be some angle in [0, 2π], and let u be some unit vector in IR3. Let Q(u, θ) denote the rotation
with this angle and direction of rotation. Explain why Q(θ,−u) is the inverse of Q(u, θ).

5.8 Let θ be some angle in [0, 2π], and let u be some unit vector in IR3. Let Q(u, θ) denote the rotation
with this angle and direction of rotation. What are the angle and direction of rotation of (Q(u, θ))2? How
about (Q(u, θ))3?

5.9 Let θ be some angle in [0, 2π], and let u be some unit vector in IR3. LetQ(u, θ) denote the rotation with
this angle and direction of rotation. Show that there is always a rotation matrix Q so that Q2 = Q(u, θ).
That is, every rotation matrix has a square root that is also a rotation matrix.

5.10 Let u be any unit vector in IR3. Let Mu denote the reflection matrix I − 2uut.

(a) Compute det(Mu).

(b) Show that for any two unit vectors u1 and u2 in IR3, the product Mu1Mu2 is a rotation.

(c) What are the axis and angle of rotation of Mu1Mu2? Express your answer in terms of u1 and u2.

(d) Show that every 3× 3 rotation matrix Q can be written as Q = Mu1Mu2 for some u1 and u2, and in
fact, that there are infinitely many ways to do this.

5.11 Every 3 × 3 orthogonal matrix is either a reflection or a rotation. Is this true of 3 × 3 orthogonal
matrices?
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Section 6: The Generator of a Rotation and Interpolation

6.1 Euler’s formula for the rotation matrix in terms of θ and u.

We have seen in the previous section that every 3 × 3 rotation matrix Q with Q2 6= I
has a uniquely determined direction of rotation and and angle of rotation, and we have
seen how to compute them given Q. We also know that the direction of rotation and and
angle of rotation determine Q; there is just one rotation matrix with any given direction
vector u and angle of rotation θ. Call this rotation matrix Q(u, θ). We will now deduce a
formula for Q(u, θ).

First, consider a special case. Let z be any non zero vector in the plane of rotation. In
this case,

Qz = cos(θ)z + sin(θ)(u× z) . (6.1)

To see this, observe that u× z is a vector of length |z| that is orthogonal to both z and
u. In particular, {z,u× z} is a basis for the plane of rotation. Since Qz lies in the plane
of rotation, we may write

Qz = az + b(u× z)

for some a and b.
To determine a, take the dot product of both sides with z. We get

a =
z ·Qz
|z|2

.

the right hand side is the cosine of the angle between z and Qz, which is of course θ, the
angle of rotation. That is, a = cos(θ).

To determine b, take the cross product of both sides with z. We get

z×Qz = bz× (u× z) .

Since u and z are orthogonal and u is a unit vector, the right hand rule gives us z×(u×z) =

|z|2u. Hence with v defined by v =
1
|z|

z,

v ×Qv = bu .

By the fromula (5.9) for the direction vector, b = sin(θ).
Our determination of the values of a and b verifies the formula (6.1). Now consider the

general case. Let x be an arbitrary vector in IR3, and let x = x‖ + x⊥ be the orthogonal
decomposition of x into its components along the axis of rotation and in the plane of
rotation. Then, since the orthogonal projection onto the axis of rotation is uut, we have

x‖ = (uut)x

and
x⊥ = (I − uut)x .
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Then since
Qx = Qx‖ +Qx⊥ = x‖ +Qx⊥ ,

and Qx⊥ is given by (6.1). We can simplify the result by noticing that since u× x‖ = 0,
we have u× x⊥ = u× x. This gives us Euler’s formula for Q = Q(u, θ):

Q(u, θ)x = (uut)x + cos(θ)(I − uut)x + sin(θ)(u× x) . (6.2)

To write this down in matrix form, we need to express the final term in matrix form;
the first two already are. Here is how: Consider the transformation from IR3 to IR3 given
by

x → u× x .

If we write u =

 ab
c

 and x =

xy
z

, we have that

u× x =

 bz − cycx− az
ay − bx

 . (6.3)

Each entry on the right hand side is a linear function of x, y and z, so this is a linear
transformation. Therefore, we can find a matrix Bu so that

Bux = u× x .

The jth column of Bu will be Buej , and from (6.3) we have

u× e1 =

 0
c
−b

 u× e2 =

−c0
a

 u× e3 =

 b
−a

0

 .

Therefore,

Bu =

 0 −c b
c 0 −a
−b a 0

 . (6.4)

As you can easily check,
Bux = u× x .

We can now write (6.2) in matrix form as

Q(u, θ) = cos(θ)I + (1− cos(θ))uut + sin(θ)Bu . (6.5)

Example 1 (Computing Q(u, θ)) Let u =
1

3

[
2
2
1

]
and let θ = arccos(5/13). We will now use (6.5) to

compute Q(u, θ).
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First,
sin(arccos(5/13)) = 12/13 .

Next,

uut =
1

9

[
4 4 2
4 4 2
2 2 1

]
,

and finally,

Bu =
1

9

[
0 −1 2
1 0 −2
−2 2 0

]
.

Putting it all together,

Q(u, θ) =
5

13
I +

8

13

1

9

[
4 4 2
4 4 2
2 2 1

]
+

12

13

1

3

[
0 −1 2
1 0 −2
−2 2 0

]
=

1

117

[
77 −4 88
68 77 −56
−56 88 53

]
.

6.2 Using Euler’s formula to compute u.

We learned earlier that every 3× 3 matrix Q satisfying the algebraic relations QtQ = I
and det(Q) = 1 is, considered geometrically as a transformation of IR3, a rotation through
some angle θ about some axis along the direction u.

Using direct geometric reasoning, we deduced Euler’s formula (6.5) for Q in terms of θ
and u. We can also use this formula to easily compute θ and u for any rotation matrix Q.
Here is how:

The first two terms in (6.5) are symmetric matrices. Indeed, (uut)t = (ut)tut = uut.
The last term is antisymmetric since clearly (Bu)t = −Bu. Now let Q be any 3× 3 matrix
satisfying QtQ = I and det(Q) = 1. Then we know that for some θ and u,

Q = cos(θ)I + (1− cos(θ))uut + sin(θ)Bu . (6.6)

Taking the transpose,

Qt = cos(θ)I + (1− cos(θ))uut − sin(θ)Bu . (6.7)

Therefore, subtracting (6.7) from (6.6) and dividing by 2,

sin(θ)Bu =
1
2
(
Q−Qt

)
. (6.8)

Since we already have an explicit formula for θ in terms of Q, namely θ = cos−1(tr(Q) −
1)/2), this gives us an explicit formula for u, and by computing

1
2
(
Q−Qt

)
and Tr(Q) ,
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we can determine both u and θ.

Example 2 (Computing u and θ)) Let Q =
1

3

[
1 2 2
2 1 −2
−2 2 −1

]
. As you can easily check, Q is a rotation.

We have,

1

2

(
Q−Qt

)
=

1

6

[
0 0 4
0 0 −4
−4 4 0

]
.

Now from (6.4) and (6.7), we have

sin(θ)u =
1

6

[
4
4
0

]
.

Since sin(θ) is positive for 0 < θ < π, he length of the vector on the right must be sin(θ). We can eliminate
sin(θ) by dividing by the length. doing so, we find

u =
1
√

2

[
1
1
0

]
.

since the trace of Q is 1/3, we have θ = cos−1(1/3).

Let’s do one more. This time, let Q = 1
9

[
1 8 4
4 −4 7
8 1 −4

]
. As you can check, this is a rotation matrix.

Computing,

1

2
(Q−Qt) =

1

9

[
0 2 −3
−2 0 3

2 −3 0

]
.

From this it follows that

sin(θ)u =
1

9

[−3
−2
−2

]
=

√
17

9

(
1
√

17

[−3
−2
−2

])
.

and hence

u =
1
√

17

[−3
−2
−2

]
.

Next, we find that Tr(Q) = −7/9. This means that cos(θ) = (−7/9− 1)/2 = −8/9, and so

θ = cos−1(−8/9) .

Now let’s pause to take stock of what we have learned. We have two ways to think
about 3×3 rotation matrices: We can think of them algebraically, in terms of the relations
QtQ = I and det(Q) = 1. Alternatively, we can think about them geometrically in terms
of their axis and angle of rotation. We know how to go back and forth between the two
points of view. One reason this is useful is that some things are easier to see algebraically,
and others are easier to see geometrically.

For example, Theorem 1.1 says that the product of two rotations is again a rotation.
This had an easy algebraic proof. It is probably less easy to see this directly in geoemtric
terms. Indeed, if you reflect IR3 about two planes, the result is not another reflection.
Why should it be that if we rotation IR3 through the angle θ1 about u1, and then rotate
it through the angle θ2 about u2, the combined result is the same as rotating IR3 through
some angle θ about some unit vector u?
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If you think about this question, you will probably find that it is not easy to visualize
the new angle and axis. Nonetheless, we now have the means to compute them: Let Q1

and Q2 be the individual rotations. Compute the matrix product Q = Q1Q2. By Theorem
1.1, this is again a rotation. We can find the corresponding θ and u using (6.7).

Example 3 (Computing u and θ) for a product of rotations) Let Q1 =
1

3

[
1 2 2
2 1 −2
−2 2 −1

]
and let

Q2 =
1

9

[
1 8 4
4 −4 7
8 1 −4

]
. These are the rotation matrices from Example 2. The product Q = Q1Q2 is also

a rotation matrix. What are the angle θ and direction u of rotation for Q?
To find this, we first compute that

Q = Q1Q2 =
1

27

[
25 2 10
−10 10 23
−2 −25 10

]
,

and from this that

1

2
(Q−Qt) =

1

9

[
0 2 2
−2 0 8
−2 −8 0

]
.

From this we see that

sin(θ)u =
1

9

[−8
2
−2

]
.

The length of

[−8
2
−2

]
is 6
√

2 so that

[−8
2
−2

]
= 6
√

2

(
1

6
√

2

[−8
2
−2

])
Also, we note that Tr(Q) = 45/27. Hence cos(θ) = (45/27− 1)/2 = 1/3,

θ = cos−1(1/3) and u =
1

3
√

2

[−2
1
−1

]
.

6.3 Application to interpolation

What are the practical problems that motivate our study of 3 × 3 rotation matrices?
There are many. One important one is the interpolation problem.

To explain this, consider the picture at the beginning of this section. Let x0 be the
location of the reference point at time t = 0, and let Q0 be the rotation matrix given by
[u1,u2,u3] at time t = 0. Likewise, let x1 be the location of the reference point at time
t = 0, and let Q1 be the rotation matrix given by [u1,u2,u3] at time t = 1.

If we want to make an animation showing the motion between times t = 0 and t = 1,
we need to find a continuous time dependent vector x(t) with

x(0) = x0 and x(1) = x1 (6.9)
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and a continuous time dependent rotation matrix Q(t) with

Q(0) = Q0 and Q(1) = Q1 . (6.10)

It is easy to find an interpolation satisfying (6.9): We can use the straight line segment
connecting x0 and x1:

x(t) = (1− t)x0 + tx1 = x0 + t(x1 − x0) .

As you can easily check, this satisfies the requirement (6.9).
It is not so easy to interpolate between the rotation matrices Q0 and Q1. We cannot

simply use
(1− t)Q0 + tQ1

since this generally will not be a rotation for 0 < t < 1. For example, let Q0 =

 1 0 0
0 1 0
0 0 1


and Q1 =

−1 0 0
0 −1 0
0 0 1

. You can easily check that these are both rotations. However

(1− t)Q0 + tQ1 =

 1− 2t 0 0
0 1− 2t 0
0 0 1


and this does not have orthonormal columns for 0 < t < 1, so while (6.10) is satisfied, the
interpolating matrices Q(t) are not rotations, and hence cannot be used to describe the
configuration of our rigid body at time t.

In two dimensions, it is easy to see how to interpolate between to rotations using rota-
tions. As we have seen, the general 2× 2 rotation matrix has the form

Q =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(6.11)

where θ is some angle in the interval[0, 2π).

To interpolate between Q0 =
[

cos(θ0) − sin(θ0)
sin(θ0) cos(θ0)

]
and Q1 =

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
,

just interpolate the angle: Define

θ(t) = (1− t)θ0 + tθ1 .

Then, as you can easily see,

Q(t) =
[

cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

]
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satisifies (6.10), and is a 2× 2 rotation matrix for each t.
To find such an interpolation for 3 × 3 rotation matrices, we need to find the three

dimensional analog of (6.11):
Define

U = Q1Q
t
0 .

Since this is a product of rotations, it is itself a rotation, Therefore, we can write it in
the form U = Q(u, θ) for some unit vector u and some angle θ with 0 < θ ≤ π. (Since
Q0 6= Q1, U 6= I, and θ 6= 0).

Now for 0 ≤ t ≤ 1, define the rotation U(t) by

U(t) = Q(u, tθ) .

Then define Q(t) by
Q(t) = U(t)Q0 .

Since for each t this is a product of rotations, it is itself a rotation. This does the trick.
Since U(0) = I,

Q(0) = IQ0 = Q0 .

Also, since U(1) = Q = Q1Q
t
0,

Q(1) = Q1Q
t
0Q0 = Q1I = Q1 .

This gives us our interpolation.
To interpolate between Q0 and Q1 we need to be able to compute the matrix Q(u, tθ)

for 0 < t < 1 where Q(u, θ) = Q1Q
t
0.* What we have just learned makes this easy.

Example 4 (Computing an interpolation) ) Let Q0 =
1

9

[
1 4 8
8 −4 1
4 7 −4

]
and Q1 =

1

3

[
1 2 2
2 1 −2
−2 2 −1

]
.

Then, recognizing these matrices from Example 3, we have thatt Q1Qt0 = Q(u, θ) where

Q(u, θ) =
1

27

[
25 2 10
−10 10 23
−2 −25 10

]
.

* Note what we are not doing in our iinterpolation between Q0 and Q1: We are not making a linear
interpolation between (u0, θ0) and (u1, θ1). One could define

u(t) =
(1− t)u0 + tu1

|(1− t)u0 + tu1|
and θ(t) = (1− t)θ0 + tθ1 .

Then we could interpolate between Q(u0, θ0) and Q(u1, θ1) using

Q(t) = Q(u(t), θ(t)) .

This is not what we do. Our interpolation is different: if is based on consideration of Q1Qt0. In the next

section, we shall see why this is the “most economical” interpolation, with the minimum of “twisting and

turning”.
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In Example 3 we computed that

θ = cos−1(1/3) and u =
1

3
√

2

[−2
1
−1

]
.

Hence with this value of θ and this value of u, we define

θ(t) = t cos−1(1/3)

and then define U(t) using (6.5):

U(t) = cos(θ(t))I + (1− cos(θ(t)))uut + sin(θ(t))Bu .

Since

uut =
1

18

[
4 −2 2
−2 1 −1

2 −1 1

]
and Bu =

1

3
√

2

[
0 1 1
−1 0 2
−1 −2 0

]
.

Hence, a bit more explicitly,

U(t) = cos(θ(t))

[
1 0 0
0 1 0
0 0 1

]
+ (1− cos(θ(t)))

1

18

[
4 −2 2
−2 1 −1

2 −1 1

]
+ sin(θ(t))

1

3
√

2

[
0 1 1
−1 0 2
−1 −2 0

]
.

Finally, the interpolation is given by

Q(t) = U(t)Q0 .

6.4 Rotations and matrix exponentials.

There is an identity relating u× ut and Bu that opens the way to a cleaner expression
of (6.5). The identity is

(Bu)2 = (uut − I) . (6.12)

Indeed, let u =

 ab
c

 be any unit vector in IR3. Then Bu =

 0 −c b
c 0 −a
−b a 0

 so that

B2
u =

 0 −c b
c 0 −a
−b a 0

 0 −c b
c 0 −a
−b a 0

 =

−(b2 + c2) ab ac
ba −(a2 + c2) bc
ca cb −(a2 + b2)

 .

Since a2 + b2 + c2 = 1, this means

B2
u =

 a2 − 1 ab ac
ba b2 − 1 bc
ca cb c2 − 1

 = uut − I .
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This identity allows us to simplify (6.5) and to express it just in terms of powers of Bu:

Q(u, θ) = cos(θ)I + (1− cos(θ))uut + sin(θ)Bu

= I + (cos(θ)− 1)I + (1− cos(θ))uut + sin(θ)Bu

= I + sin(θ)Bu − (1− cos(θ))(Bu)2 .

(6.13)

There is another even simpler identity realting Bu and uut, namely Buuut = 0. This
follows from Buu = 0. Using this and (6.12), it is simple to deduce the formulas

(Bu)2k = (−1)k−1B2
u (6.14)

and for all k ≥ 0,
(Bu)2k+1 = (−1)k−1Bu . (6.15)

We can apply these to see that

I + sin(θ)Bu − (1− cos(θ))(Bu)2 = eθBu = eθBu .

Indeed, by (6.15),

sin(θ)Bu =

( ∞∑
k=0

θ2k+1(−1)k

(2k + 1)!

)
Bu

=
∞∑
k=0

θ2k+1

(2k + 1)!
(
(−1)kBu

)
=
∞∑
k=0

θ2k+1

(2k + 1)!
(Bu)2k+1

=
∞∑
k=0

(θBu)2k+1

(2k + 1)!

Using (6.14), we have that

−(1− cos(θ))(Bu)2 =
∞∑
k=1

θ2k

(2k)!
(−1)k−1(Bu)2

=
∞∑
k=1

θ2k

(2k)!
(
B2k

u

)
.

Combining these last two formulas with (6.13), we have that

Q(u, θ) = I +
∞∑
k=0

(θBu)2k+1

(2k + 1)!
+
∞∑
k=1

θ2k

(2k)!
B2k

u

=
∞∑
`=0

θ` (Bu)`

`!

= eθBu .
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We have just shown that any rotation matrix Q is the exponential of an antisymmetric
matrix B. There is a valid converse:

• A 3 matrix Q is a rotation matrix if and only if Q = etB where B is antisymetric.

Indeed, we have already seen that any rotation matrix Q can be written as

Q = Q(u, θ) = eθBu ,

where θBu is antisymmetric.
To prove the converse, let Q = eB where B is antisymetric. Then Bt = −B, and so

B and Bt certainly commute; i.e., BtB = BBt. This has the following significance here:
If C is any 3 × 3 matrix such that BC = CB, so that the order of multiplication is not
important in products of B and C, then

eB+C = eBeC ,

just as if B and C were numbers. If BC 6= CB, things are completely different.
To apply this here, take C = Bt = −B. Then,

eB
t

eB = eB
t+B = e0 = I .

It also follows from the power series representation that

(eB)t = eB
t

,

and therefore, if we define Q = eB , we have

QtQ = I .

That is, the exponential of an antisymmetric matrix is an isometry.
Better yet, it is actually a rotation. To see this, observe that since (1/2)B commutes

with itself,
eB = e(1/2)B+(1/2)B = e(1/2)Be(1/2)B .

Since (1/2)B is antisymmetric, e(1/2)B is an isometry, and so det
(
e(1/2)B

)
= ±1. Either

way,

det
(
eB
)

= det
(
e(1/2)B

)
det
(
e(1/2)B

)
= 1 .

We have proved the following:

Theorem 1 (Rotation matrices and antisymmetric matrices) A 3× 3 matrix Q is
a rotation matrix if and only if there is a 3 × 3 antisymmetric matrix B so that Q = eB.
Moreover, if u is any unit vector and θ is any angle with 0 ≤ θ ≤ π, then the rotation
Q(u, θ) with direction of rotation u and angle of rotation θ is given by

Q(u, θ) = eθBu

= cos(θ)I + (1− cos(θ))uut + sin(θ)Bu .
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It is natural to refer to a matrix B such that eB = Q a logarithm of Q.
Example 5 (Finding a logarithm of a rotation) Let Let Q be the orthogonal matrix studied in

Examples 1, 2 and 3 of the previous section. We found that for this Q, u =
1
√

2

[
1
1
0

]
and θ = arccos(−1/3).

Then

Bu =
1
√

2

[
0 0 −1
0 0 1
1 −1 0

]
,

and so

B = θBu =
arccos(−1/3)

√
2

[
0 0 −1
0 0 1
1 −1 0

]
.

Now consider etBu for arbitrary values of t. We can write any number t in the form

t = nπ + s

where n is an integer and s is in the interval [0, π), and both n and s are uniquely deter-
mined. Since

cos(nπ + s) = (−1)n cos(s) and sin(nπ + s) = (−1)n sin(s) ,

etBu = es((−1)nBu) .

It follows that s is the angle of rotation of etBu , and the direction of rotation of etBu is
(−1)nu.

6.5 Angular velocity in IR3

Let Q(s) be a time dependent 3 × 3 rotation matrix, and suppose that Q(s) can be
differentiated entry by entry. Let Q′(s) denote this derivative. Now, since the transpose
of Q(s) is also a rotation, Q(s)Qt(s) = I. The right hand side is constant, and so

(Q(s)Qt(s))′ = I ′ = 0 .

By the product rule, (Q(s)Qt(s)) = Q′(s)Qt(s) + Q(s)(Qt(s))′. But clearly, (Qt(s))′ =
(Q′(s))t, and so

Q′(s)Qt(s) = −Q(s)(Q′(s))t

= −(Q′(s)Qt(s))t .

In other words, for each s,
A(s) = Q′(s)Qt(s) (6.16)

is an antisymmetric matrix.
We can rewrite (6.16) as

Q′(s) = A(s)Q(s) . (6.17)
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Writing the antisymmetric matrix A(s) in the form

A(s) =

 0 −c(s) b(s)
c(s) 0 −a(s)
−b(s) a(s) 0

 , (6.18)

we define the corresponding vector a(s) by

a(s) =

 a(s)
b(s)
c(s)

 .

This vector a(s) is called the angular velocity vector of Q(s):

Definition (Angular velocity) If Q(s) is a differential 3×3 matric valued function of s,

the corresponding angular velocity vector a(s) is the IR3 values function a(s) =

 a(s)
b(s)
c(s)


such that the corresponding antisymmetric matrix A(s) given by (6.18) satisfies (6.16).

Just as a path x(s) in IR3 can be recovered from a specification of the velocity x′(s)
and the starting position x0, a path in the space of rotations can be recovered from a
specification of the angular velocity vector a(s) and the starting rotation Q0.

If the angular velocity is constant; i.e., if a(s) and hence A(s) do not actually depend
on s, this can be done in closed form. Let A denote the constant antisymteric matrix A
corresponding to the angular velocity. Then

Q(s) = esAQ0 . (6.19)

You can easily check that
Q′(s) = AesAQ0 = AQ(s) ,

so that this is one solution of (6.17), and this solution satisfies Q(0) = Q0.
Now suppose that Q̃(s) is any other such solution. Then

((Q̃(s))tQ(s))′ = ((Q̃(s))′)tQ(s) + (Q̃(s))tQ′(s)

= (AQ̃(s))tQ(s) + (Q̃(s))tAQ(s)

= (Q̃(s))tAtQ(s) + (Q̃(s))tAQ(s)

= (Q̃(s))t(At +A)Q(s)

= 0

since At = −A. Therefore, (Q̃(s))tQ(s) is constant. Since (Q̃(0))tQ(0) = Qt0Q0 = I,

(Q̃(s))tQ(s) = I
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for all s, which means that Q̃(s) = Q(s) for all s. That is, (6.19) is the only solution of
(6.17) in this case.

In fact, the same argument shows that solutions to (6.17) are always unqiue whenever
they exist. What having A constant helps with is the existence of any solution; only in
this case do we have the nice formula (6.19).

If A(s) really does depend on s, things are more subtle, but still (6.19) helps. A
reasonable thing to do is to approximate A(s) be a piecewise constant function, that is
constant on time intervals of some step size h > 0.

For example, fix a step size h > 0. For each integer m, define Am = A(mh). We will
approximate A(s) by Am in the time interval

mh ≤ s ≤ m+ 1)h .

The approximation is exact at the left hand side of the interval, and if h is small and
the motion is smooth, it will still be good at the right side. Then, for s in the interval
0 ≤ s ≤ h, define

Q(s) = esA0Q0 .

Next, for s in the interval h ≤ s ≤ 2h, define

Q(s) = e(s−h)A1Q(h) .

Next, for s in the interval 2h ≤ s ≤ 3h, define

Q(s) = e(s−2h)A2Q(2h) ,

and so on.
This gives us an approximate solution of (6.19), and it may be shown that if A(s)

depends continuously on s, that this tends to the exact solution as h tends to zero. If A(s)
is differentiable, one gets a pretty good approximation even with a reasonable value of the
step size.

Finally, we return once more to the interpolation problem. Recall that our recipe for
interpolating between Q0 and Q1 is to form the matrix Q1Q

t
0, and to write it in the form

Q1Q
t
0 = eθBu .

We then define
Q(s) = esθBuQ0 .

What is the angular velocity along this interpolation path? Thats easy:

(Q(s))′ = θBue
sθBuQ0 = θBuQ(s)

which means that
A(s) = θBu .
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This does not depend on s. In other words, our interpolation produces a path in the space of
rotations that has constant angular velocity, just as the linear interpolation (1−s)x0 +sx1

between two points in IR3 produces a path of constant velocity.
Moreover, the straight line segment (1−s)x0+sx1 is the shortest path in IR3 connecting

x0 and x1. In the next section we will see that our interpolation between Q0 and Q1 is
the shortest path in the space of rotations that runs from Q0 to Q1. The first thing we
will have to do there is to explain how one measures distance in the space of rotations.

Exercises

In the Exercises 2.1 through 2.8, let Q1, Q2, Q3 and Q4 be the following rotation matrices:

Q1 =
1

9

[
1 8 4
4 −4 7
8 1 −4

]
Q2 =

1

75

[−23 −14 70
−14 73 10
−70 −10 −25

]
Q3 =

1

45

[
35 −20 −20
4 35 −28
28 20 29

]
Q4 =

1

117

[
77 −68 −56
4 77 −88
88 56 53

]
.

6.1 Find the time dependent orthogonal matrix U(t), 0 ≤ t ≤ 1 so that Q(t) = U(t)Q1 interpolates
between Q1 and Q2.
6.2 Find the time dependent orthogonal matrix U(t), 0 ≤ t ≤ 1 so that Q(t) = U(t)Q1 interpolates
between Q1 and Q3.
6.3 Find the time dependent orthogonal matrix U(t), 0 ≤ t ≤ 1 so that Q(t) = U(t)Q1 interpolates
between Q1 and (Q1)2.
6.4 Find the time dependent orthogonal matrix U(t), 0 ≤ t ≤ 1 so that Q(t) = U(t)Q1 interpolates
between Q1 and (Q1)3.

6.5 Find all antisymetric matrices B so that etB = Q1.

6.6 Find all antisymetric matrices B so that etB = Q2.

6.7 Find all antisymetric matrices B so that etB = Q3.

6.8 Find all antisymetric matrices B so that etB = Q4.

6.9 Let u be any unit vector in IR3, and let Bu be the corresponding antisymmetric matrix. Let Q be
any rotation matrix. How are QBuQt and Qu related?
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