
First Homework, due Monday September 14, 2009

Please solve problems 1, 4, 5, 8 on page 85-87 of L.C.Evans’ book.
Solution to problem 1 on page 85 of L.C.Evans: Set u(x, t) = e−ctv(x, t) yields the

equation
−ce−ctv(x, t) + e−ctvt(x, t) + e−ctb ·Dv(x, t) + ce−ctv(x, t) = 0

with the initial condition v(x, 0) = g(x). Thus

vt + b ·Dv = 0

which yields the solution
v(x, t) = g(x− bt) ,

and thus
u(x, t) = e−ctg(x− bt) .

Solution to problem 4 on page 86 of L.C.Evans: a) As for the harmonic case consider
the expression

φx(r) =
1

|∂Br(x)|

∫
∂Br(x)

v(y)dS(y)

and differentiate with respect to r. You get

φ′x(r) =
1

|∂Br(x)|

∫
∂Br(x)

∂v

∂n
(y)dS(y) =

1
|∂Br(x)|

∫
Br(x)

∆v(y)dS(y) ,

by Gauss’ theorem. Since ∆v ≥ 0 this shows that φ′x(r) ≥ 0 and hence

v(x) = lim
r→0

φx(r) ≤ φx(r) =
1

|∂Br(x)|

∫
∂Br(x)

v(y)dS(y) .

Further since∫
Br(x)

v(y)dy =
∫ r

0

∫
∂Br(x)

v(y)dS(y)dr ≥ v(x)
∫ r

0

|∂Br(x)|dr = v(x)|Br(x)|

the claim follows.

b) By restricting ourselves to a connected component of U we may assume that U is
connected. Assume that there exists a point x0 ∈ U where

v(x0) = max
U

v(x); = M .
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We shall show that v = M in U . Consider the set C = {x ∈ U : v(x) = M}. This set is
closed, since v is continuous. For x ∈ C pick a ball Br(x) ⊂ U and note that

M = v(x) =
1

|Br(x)|

∫
Br(x)

v(y)dS(y) ≤M .

Hence v(y) = M for all y ∈ Br(x) and hence C is also open. Since U is connected and C
is not empty, C = U . Since v is continuous on U , this shows that

max
U

v(x) = max
∂U

v(x) .

c) Note that
∇φ(u) = φ′(u)∇u

and
∆φ(u) = φ′′(u)|∇u|2 + φ′(u)∆u = φ′′(u)|∇u|2

since u is harmonic. Further, since φ is convex ∆φ(u) ≥ 0.

d) ∑
j

∂i(∂ju)2 = 2
∑

j

∂i∂ju∂ju

∑
j

∂2
i (∂ju)2 = 2

∑
j

∂2
i ∂ju∂ju+ 2

∑
j

(∂i∂ju)2 .

Summing over i and using that u is harmonic, yields

∆|∇u|2 = 2
∑
i,j

(∂i∂ju)2 ≥ 0 .

Solution of Problem 5 on page 86 in L.C. Evans: The solution u = u1 + u2 where u1

is harmonic with boundary value g and u2 solves −∆u2 = f with boundary value 0. From
the maximum/minimum principle for harmonic functions we know that

maxu1 ≤ max g ≤ max |g| , minu1 ≥ min g ≥ −max |g|

Hence
max |u1| ≤ max |g| .

For u2 we use the Green’s function and write

u2(x) =
∫
G(x, y)f(y)dS(y) ≤

∫
G(x, y)dS(y) max |f |

2



since the Green’s function is positive. To calculate
∫
G(x, y)dS(y) we note that this is a

function v that solves the equation −∆v = 1 in the unit disk and vanishes on the boundary.
Hence, by uniqueness one finds

v(x) =
1

2n
(1− |x|2) .

Thus
max |u2| ≤

1
2n

max |f | .

Solution of problem 8 on page 86 of L.C.Evans: Using Poisson’s formula on the half
space we can write

u(x) =
2xn

|Sn−1|

∫
∂Rn

g(y)
|x− y|n

dy .

Since g is continuous we know that as x approaches the boundary, u(x) converges to g and
hence u(0) = 0. Hence for λ > 0

u(λen)− u(0)
λ

=
2

|Sn−1|

∫
∂Rn

g(y)
|λen − y|n

dy .

Next we split this integral into∫
∂Rn

g(y)
|λen − y|n

dy =
∫
|y|<1

g(y)
|λen − y|n

dy +
∫
|y|≥1

g(y)
|λen − y|n

dy

and note that the second integral is uniformly bounded as λ →, since g is bounded. The
first integral we write explicitly as∫
|y|<1

|y|
(λ2 + |y|2)n/2

dy = |Sn−2|
∫ 1

0

r

(λ2 + r2)n/2
rn−2dr = |Sn−2|

∫ 1

0

rn−1

(λ2 + r2)n/2
dr .

Since rn−1

rn is not integrable at r = 0 this integral tends to infinity as λ tends to zero.

Problem 5: Let U ⊂ R3 be open and u(x) ∈ C2(U) satisfy the equation

∆u− µ2u = 0 ,

where µ > 0. Show that for any ball Br(x) ⊂ U

u(x) =
µr

sinh(µr)

∫
∂Br(x)

u(y)dS(y)

|∂Br(x)|
.
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Hint: Show that

div
[

sinh(µ|x|)
µ|x|

∇u(x)− u(x)∇ sinh(µ|x|)
µ|x|

]
= 0

and integrate this identity over the ball Br(x).

Set

g(x) =
sinh(µ|x|)
µ|x|

and compute ∆g. Note that g is a radial function and hence, setting r = |x| it suffices to
calculate

d2

dr2
g +

n− 1
r

d

dr
g = µ2g ,

i.e.,
∆g = µ2g .

From this we get the identity

÷[g∇u− u∇g] = g∆u− u∆g = 0 .

Fix x and write
v(y) = u(x+ y) .

This function satisfies the equation ∆v = µ2v and claim is transformed into the statement

v(0) =
µr

sinh(µr)

∫
∂Br(0)

v(y)dS(y) .

To see this, integrate 0 = ÷[g∇v − v∇g] over Br(0) and use Gauss’ theorem to obtain∫
∂Br(0)

g(y)
∂v

∂n
(y)dS(y) =

∫
∂Br(0)

v(y)
∂g

∂n
(y)dS(y) .

Since g is radial this reduces to

g(r)
∫

∂Br(0)

∂v

∂n
(y)dS(y) = g′(r)

∫
∂Br(0)

v(y)dS(y) .

Divide this equation by the surface area |∂Br(0) yields and noting, as in the second problem
that ∫

∂Br(0)
∂v
∂n (y)dS(y)

|∂Br(0)|
=

d

dr

∫
∂Br(0)

v(y)dS(y)

|∂Br(0)|
we get

g(r)
d

dr

∫
∂Br(0)

v(y)dS(y)

|∂Br(0)|
= g′(r)

∫
∂Br(0)

v(y)dS(y)

|∂Br(0)|
.

From this one gets readily that ∫
∂Br(0)

v(y)dS(y)

g(r)|∂Br(0)|
is a constant. As r tends to zero this ratio converges to v(0).
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