First Homework, due Monday September 14, 2009

Please solve problems 1, 4, 5, 8 on page 85-87 of L.C.Evans’ book.
Solution to problem 1 on page 85 of L.C.Evans: Set u(z,t) = e “‘v(x,t) yields the
equation
—ce” oz, t) + e Cog(x,t) + e b - Du(a,t) + ce” “o(x,t) =0

with the initial condition v(z,0) = g(x). Thus
vi+b-Dv=20

which yields the solution
U(xat) = g(.CC o bt) )

and thus
u(x,t) = e ““g(x —bt) .

Solution to problem 4 on page 86 of L.C.Evans: a) As for the harmonic case consider
the expression

1
¢x r Yy dsS Yy
(r) = [0B,(z)] 8B(x)() )
and differentiate with respect to r. You get
1 ov 1
L (r das Av(y)dS(y) ,
D)= BB, Sy, ) 50O = BB Sy, ) 2O

by Gauss’ theorem. Since Av > 0 this shows that ¢ (r) > 0 and hence

0(2) = lim ¢y(r) < dol(r) = = o(y)dS(y)

r—0 \5’3 ()] JoB,.(x)

Further since

/Br(m) v(y)dy = /0 /8&(90) v(y)dS(y)dr > U(IL”>/O |0B,.(x)|dr = v(x)|B,(z)|

the claim follows.

b) By restricting ourselves to a connected component of U we may assume that U is
connected. Assume that there exists a point o € U where

v(zp) = maxv(z);= M .
U



We shall show that v = M in U. Consider the set C = {z € U : v(x) = M}. This set is
closed, since v is continuous. For x € C pick a ball B,(x) C U and note that

1
M =v(z) = B Jn.o v(y)dS(y) < M .

Hence v(y) = M for all y € B,(z) and hence C'is also open. Since U is connected and C
is not empty, C = U. Since v is continuous on U, this shows that

mﬁax v(x) = max v(x) .

c¢) Note that

and

Ag(u) = ¢ (u)|Vul* + ¢ (w) Au = ¢ (u)| Vul?

since v is harmonic. Further, since ¢ is convex A¢(u) > 0.

d)
Z 81 (8ju)2 =2 Z Glajuﬁju
J J

Z 07 (0ju)* =2 Z 07 0;udju + 2 Z(@iajuf :
J J J
Summing over ¢ and using that « is harmonic, yields

AlVul> =2 (8;0u)* > 0 .

2]

Solution of Problem 5 on page 86 in L.C. Evans: The solution u = u; + us where uy
is harmonic with boundary value g and us solves —Aus = f with boundary value 0. From
the maximum /minimum principle for harmonic functions we know that

maxu; < maxg < max|g|, minwu; > ming > —max|g|

Hence
max |up| < max|g| .

For uy we use the Green’s function and write

us(z) = / G, y) f(y)dS(y) < / G(z,y)dS(y) max /]

2



since the Green’s function is positive. To calculate [ G(z,y)dS(y) we note that this is a
function v that solves the equation —Awv = 1 in the unit disk and vanishes on the boundary.
Hence, by uniqueness one finds

o(w) = (1~ laf?)

Thus

1
max |ug| < — max|f] .
2n

Solution of problem 8 on page 86 of L.C.Evans: Using Poisson’s formula on the half
space we can write
2y,
u(z) = :—1 —g(y) ~dy .
8™ Jorn |z =yl

Since g is continuous we know that as x approaches the boundary, u(x) converges to g and
hence u(0) = 0. Hence for A > 0

u(Aen) —u(0) 2 9()
A S Jorn [Aen —yl"

dy .

Next we split this integral into

9(y) / 9(y) / 9(y)
———dy = — —dy + — —dy
/avzn [Aen —y|™ yl<1 [Aen —y[™ yi>1 [Aen —y[™

and note that the second integral is uniformly bounded as A —, since g is bounded. The
first integral we write explicitly as

—1

vl -2 /1 r -2 -2 /1 "
—d = Sn n d = Sn d .
/y|<1 peEarR A Ao U S Al P e ek

Since T:; " is not integrable at » = 0 this integral tends to infinity as A tends to zero.

Problem 5: Let U C R? be open and u(z) € C?(U) satisfy the equation
Au—p?u=0,
where p > 0. Show that for any ball B,.(z) C U

u(z) = T faB,«(x) u(y)dS(y)
~ sinh(ur) |0B, ()]




Hint: Show that
sinh(pjo])

plz|
and integrate this identity over the ball B,(z).

sinh(yje])

div
plz|

Vu(z) —u(z)V =0

et inh(ulz)

S1n €T

g@%=——lL—
|

and compute Ag. Note that g is a radial function and hence, setting r = |z| it suffices to
calculate

d? n—14d
W‘(H_Td_g_ug’
ie.,
Ag = 1
g=png

From this we get the identity
+[gVu —uVyg] = gAu —ulAg =0 .

Fix x and write
v(y) = u(z +y) .

This function satisfies the equation Av = p2?v and claim is transformed into the statement

o(0) = T /a o VS0

sinh(pr)

To see this, integrate 0 = +[gVv — vVg] over B,.(0) and use Gauss’ theorem to obtain

ov dg
Ly d0 0w = [ )5 wase)

Since g is radial this reduces to
v
o) [ Swdsw) =) [ ew)ds) .
8B, (0)

Divide this equation by the surface area |0B,.(0) yields and noting, as in the second problem

that
faB (0) @ ”(y)dS(y) B ifaBT(o)U(y)dS(y)
|0B,.(0)] ~dr [9B,(0)]
we get
d faB O )dS( ) faBT(O)U(y)dS(y)
om0 YT B0

From this one gets readily that
faBr(o) v(y)dS(y)

9(r)|9B,(0)]

is a constant. As r tends to zero this ratio converges to v(0).
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