
Second Homework, due Wednesday October 7, 2009

1) The initial temperature distribution of a rod of length is given by

Ax(1− x) , 0 ≤ x ≤ 1 ,

where A is a constant. Find the temperature distribution at time t when both ends of the
rod are kept at zero temperature.

Solution: The Fourier Ansatz

∞∑
n=1

cn
sin(πnx)√

2
e−π

2n2t

is a solution of the heat equation with the right boundary conditions. If we note that

1
2

∫ 1

0

sin(πnx) sin(πmx)dx = δm,n

we have

cn =
A√
2

∫ 1

0

x(1− x) sin(πnx)dx = − A√
2π2n2

∫ 1

0

x(1− x)
d2

dx2
sin(πnx)dx

which upon integrating by parts yields
√

2A
π3n3

(− cos(πnx)|10 =
√

2A
π3n3

(1− (−1)n)

i.e.,
c2m = 0 ,m = 1, 2, . . .

and

c2m+1 =
2
√

2A
π3n3

, m = 1.2.3. . . . .

2) Let U be a bounded open and smooth domain in Rn. Consider u(x, t) the solution of
the initial value problem

ut = ∆u , in U × (0,∞)

u = f , on U × {t = 0}

u = 0 , on ∂U × (0,∞) .

Let Γ ⊂ ∂U be a portion of the boundary. Calculate the total amount of heat that flows
across Γ. Express your answer in terms of the harmonic measure given by

∆h = 0 , in U

1



h = 1 , on Γ

h = 0 , on ∂U \ Γ .

Solution: The amount of heat that flows through Γ per unit time is∫
Γ

∂u

∂n
dS(y)

which can be written as∫
∂U

∂u

∂n
h(y)dS(y) =

∫
∂U

[
∂u

∂n
h(y)− u(y)

∂h

∂n

]
dS(y) ,

since u vanishes on ∂U . Green’s second identity ten tells us that∫
Γ

∂u

∂n
(y)dS(y) =

∫
U

[∆u(y)h(y)− u(y)∆h(y)] dS(y) =
∫
U

∆u(y)h(y)dS(y)

since h is harmonic in U . Using the heat equation the heat flow through Γ per unit time
is ∫

U

ut(y)h(y)dS(y) .

We use now the (unproven) fact that u(x, t)→ 0 as t→∞ to integrate and obtain for the
total amount of heat that flows through Γ∫ ∞

0

∫
U

ut(y)h(y)dS(y) = −
∫
U

f(y)h(y)dy .

Note that the sign is right. If f is positive then the heat flows out of U which is
indicated by the minus sign.

3) Please solve Problems 11 and 16 on page 87/88 of L.C Evans’ book.

Solution of problem 11 on page 87 of L.C.Evans: It is interesting to note that if u(x, t)
is a solution of the heat equation, then u(λ2t, λx) is also a solution. Here λ is any positive
real number. Hence it is reasonable to look for solutions of the form v( |x|

2

t ). Plugging this
into the heat equation leads to

4zv′′(z) + (2 + z)v′(z) = 0

where z > 0. The converse is also obvious, namely whenever v(z) satisfies the above
equation, then v( |x|

2

t ) satisfies the heat equation. Setting w(z) = v′(z) we get

4zw′(z) + (2 + z)w(z) = 0
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which can be separated into
w′

w
= − 1

2z
− 1

4

and the solution is
w(z) = Ce−z/4z−1/2

which leads immediately to

v(z) = C

∫ z

0

e−s/4s−1/2ds+D .

Now v( |x|
2

t ) is a solution of the heat equation and so is ∂xv( |x|
2

t ) which is

Ce−
|x|2
4t

(
|x|2

t

)−1/2 2x
t

Choosing C = 1
4
√
π

for x > 0 and C = − 1
4
√
π

for x < 0 gets us the fundamental solution.

Solution of problem 16 on page 87 of L.C. Evans

The solution is based on the identity

curl(curlv) = −∆v +∇divv

which is easy to verify. Now Et = curlB and hence

∂

∂t
curlE = −∆B +∇divB = −∆B

since divB = 0. Further since curlE = −Bt

∂

∂t
curlE = −Btt

and therefore
Btt −∆B = 0 .

The calculation for E is similar.

4) By descending from two to one dimension, proof d’Alembert’s formula for the initial
value problem

utt − uxx = 0 , on R× (0,∞)

u = g , ut = h , in R× {t = 0} .
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Solution: Recall that the solution for the two dimensional wave equation is given by
(L.C. Evans page 74 formula (26))

u(x, t) =
∂

∂t

(
1

2π

∫
Bt(x)

g(y)√
t2 − |y − x|2

dy

)
+

1
2π

∫
Bt(x)

h(y)√
t2 − |y − x|2

dy

Now consider the solution where the initial conditions do not depend on the second variable,
i.e., g = g(x1), h = h(x1). One easily calculates

∫ t

−t
g(y1)

∫ √t2−(x1−y1)2

−
√
t2−(x1−y1)2

1√
t2 − (x1 − y1)2 − y2

dydy1 =
∫ 1

−1

1√
1− x2

dx

∫ x1+t

x1−t
g(z)dz

= π

∫ x1+t

x1−t
g(z)dz .

Hence we have the solution

u(x, t) =
∂

∂t

(
1
2

∫ x1+t

x1−t
g(z)dz

)
+

1
2

∫ x1+t

x1−t
h(z)dz

1
2

[g(x1 + t) + g(x1 − t)] +
1
2

∫ x1+t

x1−t
h(z)dz

which is d’Alembert’s formula.
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