Second Homework, due Wednesday October 7, 2009
1) The initial temperature distribution of a rod of length is given by
Az(l—2z),0<z<1,

where A is a constant. Find the temperature distribution at time ¢ when both ends of the
rod are kept at zero temperature.

Solution: The Fourier Ansatz
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is a solution of the heat equation with the right boundary conditions. If we note that
1 /!
2 / sin(mnx) sin(mmax)dx = Om p,
0

we have

A 1 A 1 dQ
Cp = E/O z(1 — z)sin(mnz)dr = _m/o z(1— x)@ sin(mnx)dx

which upon integrating by parts yields
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2) Let U be a bounded open and smooth domain in R™. Consider u(z,t) the solution of
the initial value problem
ug =Au , in U x (0, 00)

u=f ,onUx{t=0}
u=0 , on U x (0,00) .

Let I' C QU be a portion of the boundary. Calculate the total amount of heat that flows
across I'. Express your answer in terms of the harmonic measure given by

Ah=0 ,inU

1



h=1,onl
h=0 ,onoU\T.

Solution: The amount of heat that flows through I' per unit time is

/ 2 s(y)

which can be written as

/8 , g—Zh(y)ds(y) = /(9 ., {%h(y) —~ u(y)%} dS(y)

since u vanishes on OU. Green’s second identity ten tells us that

Ou ()dS(y) = /U Au(y)hly) — uly)Ah(y)] dS(y) = /U Au(y)h(y)dS(y)

Fan

since h is harmonic in U. Using the heat equation the heat flow through I' per unit time
is

/U w(y)h(y)dS(y)

We use now the (unproven) fact that u(z,t) — 0 as t — oo to integrate and obtain for the
total amount of heat that flows through I"

/ooo /U w(y)h(y)dS(y) = - /U Fy)h(y)dy .

Note that the sign is right. If f is positive then the heat flows out of U which is
indicated by the minus sign.

3) Please solve Problems 11 and 16 on page 87/88 of L.C Evans’ book.

Solution of problem 11 on page 87 of L.C.Evans: It is interesting to note that if u(z, t)

is a solution of the heat equation, then u(\?t, \z) is also a solution. Here X is any positive
2

real number. Hence it is reasonable to look for solutions of the form v(ﬁ) Plugging this

t
into the heat equation leads to
420" (2) + (24 2)0'(2) =0

where z > 0. The converse is also obvious, namely whenever v(z) satisfies the above
/

2
equation, then v(%) satisfies the heat equation. Setting w(z) = v'(z) we get

4zw'(z) + (24 2)w(z) =0
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which can be separated into

and the solution is

which leads immediately to
v(z) = C/ e /s 245+ D .
0

2 2
Now v(125) is a solution of the heat equation and so is d,v(2L) which is

t t
2\ —1/2
Ce_% ﬁ 2_(17
t t

Choosing C' = ﬁ forx > 0and C = —ﬁ; for < 0 gets us the fundamental solution.

Solution of problem 16 on page 87 of L.C. Evans
The solution is based on the identity
curl(curlv) = —Av + Vdive

which is easy to verify. Now F; = curlB and hence

%CUI‘IE = —-AB+VdivB = —-AB
since divB = 0. Further since curltl = —B;

0
%CUI‘]E = _Btt

and therefore
Btt - AB - 0 .

The calculation for F is similar.

4) By descending from two to one dimension, proof d’Alembert’s formula for the initial
value problem

Ut — Uz =0 , on R x (0,00)

u=g,uy=nh ,in Rx{t=0}.
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Solution: Recall that the solution for the two dimensional wave equation is given by
(L.C. Evans page 74 formula (26))

ulz t)zﬁ i/ 9(y) dy +i/ h(y) dy
’ Ot \ 21 Jp,(x) /12 — ly — a|? 27 JBu(@) V2 — |y — xf?

Now consider the solution where the initial conditions do not depend on the second variable,
i.e., g =g(x1),h = h(x1). One easily calculates

[ st e 1 L [
9 / dydy, =/ —dx/ g(z)dz
—t Py V= (21— y1)? — y? aV1I=2% Je

xl—l—t
= 77/ g(2)dz .

1—t
Hence we have the solution
1 $1+t 1 £B1+t
u(z,t) = % (5/ t g(z)dz) + §/azl_t h(z)dz

xrq1—

2

N | —

x1+t
mﬁ+w+m@—m+1/' h(z)dz

which is d’Alembert’s formula.



