
Inhomogeneous linear PDE

Consider the PDE
v(x) · Du(x) = f(x) in U ⊂ IRn (1)

where f is a given function. As usual, we assume that v(x) is a smooth vectorfield on U , so
that all the theorems concerning existence, uniqueness and differentiability with respect to
initial conditions of solutions hold. This equation should be solved subject to the condition
that u = g on some noncharacteristic hypersurface Γ.

The existence of a solution follows at once using the characteristics. Recall that the
solutions of the characterisitic equations are given by a flow

x(t) = Ψ(t, y)

where y is the initial condition. Also recall that for y on a hypersurface and for s small
enough the equation

x = Ψ(s, y)

can be solved for s(x) and y(x) and these functions are differentiable. Consider now
a solution u of this initial value problem. Recall again how we solved the homogeneous
equation. Fixing x close to the hypersurface Γ we run the flow backwards until the solution
hits the hypersurface Γ. This determines y(x) (the position where it hits the surface) and
s(x) (the time at which the flow reaches x starting at y(x) ). If u solves the homogeneous
equation

u(Ψ(t + s(x), y(x)))

is independent of t and hence

u(x) = u(Ψ(s(x), y(x))) = u(Ψ(−s(x) + s(x), y(x))) = u(y(x)) = g(y(x)).

If u solves the inhomogeneous equation then

d

dt
u(Ψ(t+s(x), y(x))) = v(Ψ(t+s(x), y(x))) ·Du(Ψ(t+s(x), y(x))) = f(Ψ(t+s(x), y(x))) .

Integrating this equation form −s(x) to 0 yields

u(x) − u(y(x)) =

∫ 0

−s(x)

f(Ψ(t + s(x), y(x)))dt , (2)

which leads immediately to the

Theorem 1

The unique solution of the initial value problem (1) is given by

u(x) = g(y(x)) +

∫ s(x)

0

f(Ψ(t, y(x)))dt . (3)
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This follows immediately from (2) by a change of variables and by noting that on Γ u

coincides with the initial condition g.

Let us consider again the example

xuy − yux = f(x, y)

with the initial condition u(x, 0) = 0 for x > 0. This problem can be solved with the
following geometric steps. The solutions of the characteristic equations form concentric
circles. Pick ~x and calculate the radius of the circle on which ~x lies to be

√

x2 + y2. Next

one has to calculate the time it takes starting at (
√

x2 + y2, 0) (which sits on the x- axis)
to reach ~x. Call this time s(~x). Now, work out formula (3). Note that this time the first
integrals are not enough, we need to know the flow. Denoting the vector (x, y) by ~x, it is
elementary to see that

~x(t) = M(t)~x(0)

where

M(t) =

[

cos(t) − sin(t)
sin(t) cos(t)

]

.

To find the time s(~x) we have to solve

x
√

x2 + y2
= cos(t) and

y

x2 + y2
= sin(t) ,

i.e., t = θ(~x), where θ(~x) is the argument of the point ~x. Now the solution is

u(x, y) =

∫ θ(~x)

0

f
(

√

x2 + y2 cos(t),
√

x2 + y2 sin(t)
)

dt .

Finally, let us note that this problem can be solved very easily in polar coordinates.
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