
How to solve linear and quasilinear first order partial differential equations

This text contains a sketch about how to solve linear and quasilinear first order PDEs
and should prepare you for the general case of first order PDEs.

Notation: We use interchangeably the notation ∇ and D for the gradient.

Given an open set U ⊂ IRn and let v(x) = v1(x), . . . , vn(x) be a smooth vector field
defined on U . With this vector field there are two problems associated.

a) The PDE
v(x) ·Du(x) = 0 in U , (1)

and

b) The system of ODE’s
d

dt
x = v(x) in U . (2)

The philosophy is to reduce the problem (1) to the problem (2). Recall that under
the stated conditions there exists always a unique solution for the initial value problem
given by (2). I.e., for any given x0 ∈ U there exists a unique function x(t) satisfying (2)
and x(0) = x0. Mind you that the solution may not exist for arbitrary times, but that is
of no concern at this moment. It is convenient to introduce the notion of a flow Ψ(t, y).
This map is defined by y → x(t) where x(t) is the solution of (2) with initial condition y.

In general problem (2) is very difficult to solve but the point of these notes is to
convince you that there is really no difference between (1) and (2). If you can solve (2)
you can solve (1) and conversely.

The following fact already points in that direction. First we need the following defi-
nition.

Definition 1: First Integral
A first integral of (2) is a function f , differentiable in U , that stays constant along any
solution of the system (2).

Lemma 1: First Integrals and Solutions are the same
Any first integral of (2) is a solution of (1) and conversely.

If f is a first integral we have that

0 =
d

dt
f(x(t)) =

d

dt
x(t) ·Df(x(t)) = v(x(t)) ·Df(x(t)) ,
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and since this holds for any solution, f satisfies (1) in all of U . Conversely, the same
differentiation argument showas that any solution of (1) in U must be a first integral for
(2).

This lemma is a very elementary observation but suggest already how to find solutions.

Example 1
Consider the PDE

xux + yvy + xy(1 + z2)uz = 0

in all of IR3. The associated system of ODE’s is given by

x′ = x, y′ = y, z′ = xy(1 + z2) ,

whose solution is given by

x(t) = etx0, y(t) = ety0, z(t) = tan(c + e2tx0y0/2) .

Now, by eliminating the time t, one finds two first integrals,

x/y, and tan−1(z)− xy/2 .

It is easy to check that these two functions are solutions of the PDE.

Example 2
The following PDE in IRn is completely elementary but very important.

ux1 = 0 .

Obviously any solution is given in the form g(x2, . . . , xn). Analyzing this example from
the ODE point of view leads to the following system

(d/dt)x1 = 1, (d/dt)x2 = 0, . . . , (d/dt)xn = 0 ,

where, obviously, x2, . . . , xn are first integrals. Thus, any function of these first integrals
is a solution of our PDE.

Here is a further observation.

Lemma 2
If f1, . . . fk are first integrals, so is F (f1, . . . , fk) where F is any differentiable function
in k variables.
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This is immediate since is the functions f1, . . . , fk are constant along the solutions of
(2) so is F (f1, . . . , fk).

Our aim is to get our hands on the general solution, i.e., we would like to find all
solutions of (1). In Example 2, this problem was solved completely. The coordinate
functions x2, . . . xn are independent, none of them can be expressed in terms of the others.
The following definition is reasonable.

Definition 2: Independence of Functions
The k functions f1, . . . fk are independent on some domain U if for every point x ∈ U the
gradients Df j(x) are linearly independent

Intuitively, one would like to say that in a set of independent functions none can
be expressed as a function of the others. Definition 2 gives us a computational way of
expressing what we mean by this. E.g., suppose that f1, f2 and f3 are dependent in
the sense that there is a function F such that f1 = F (f2, f3) maybe in some small
neighborhood of some point x0. Then

∇f1 = F1∇f2 + F2∇f3

with F1, F2 denoting the partial derivatives of F . Thus the gradients are linearly depen-
dent.

Now one can formulate the following theorem. Recall that a critical point of a vector
field is a point x such that v(x) = 0.

Theorem 1
Let f1, . . . fn−1 be n − 1, independent first integrals of the system (2). Assume that v(x)
has no critical point in U and let g be any solution of (1). Then for any point x0 in U
there is a neighborhood V and a differentiable function F so that

g = F (f1, · · · , fn−1) .

Having these independent first integrals gives a complete solution of the PDE in the neigh-
borhood V . We call f1, . . . , fn−1 a complete set of integrals.

If g is a solution of (1) then it is a first integral. This first integral cannot be inde-
pendent from f1, . . . , fn−1. If it were, then , by the inverse function theorem, one could
express, at least locally, the coordinates x1, . . . xn in terms of the integrals f1, . . . , fn−1 and
g. Since these are constant along solutions of (2) this means that x1, . . . , x

n are constant
as well. In other words, the point x1, . . . , xn must be a stationary or critical point of v(x)
which contradicts our assumption.

Now, it remains to construct the function F . Pick a point x0 ∈ U and look at the
hypersurface defined by the equations

f j(x) = f j(x0) , j = 1, . . . , n− 1 .
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Since the functions f j are independent, the intersection of all these hypersurfaces forms
a curve. This is in fact the curve along which the solution of (2) starting at x0 moves.
Denote by e a unit vector in the direction of v(x0). In the vicinity of x0 consider the new
‘coordinates’

y1 = f1(x), y2 = f2(x), . . . yn−1 = fn−1(x), yn = e · x . (3)

We claim that this is a coordinate transformation, i.e., invertible. The Jacobi matrix of
this transformation at the point x0 is given by

[Df1, Df2, . . . , Dfn−1, e]T (x0) ,

here the subscript T stands for transposition. (We think of the components of Dfk ar-
ranged as columns.) Since the vector e is perpendicular to Df j for all j, and since the
functions f j are independent, this matrix is invertible. By the inverse function theorem,
in a vicinity of x0 there exist functions h1, . . . , hn so that

xj = hj(y), j = 1, . . . , n .

Define the function F := g ◦ h, i.e.,

F (y1, . . . , yn) = g(h1(y), . . . , hn(y)) .

Returning to the x variables, we see that

F (f1(x), . . . , fn−1(x), e · x) = g(x) ,

and since g(x) is a first integral, so is the left side of the above equation. Thus,

0 =
n−1∑
k=1

∂F

∂yk
v(x) · ∇fk(x) +

∂F

∂yn
v(x) · e

and since the functions fk are first integrals we must have that

∂F

∂yn
v(x) · e = 0

in a vicinity of x0. Since v(x) does not vanish in U and is parallel to e at x0, it follows
that F does not depend on yn and hence

g(x) = F (f1, . . . , fn−1)

in a vicinity of x0. The previous theorem raises the question whether we always have n−1
independent first integrals. This is in fact true, provided v(x) does not have a critical
point.
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Theorem 2: Existence of First Integrals
Let x0 be a point in U so that v(x0) 6= 0. Then in a vicinity V of x0 there exist n− 1

independent first integrals.
Without restriction of generality we may assume that x0 is the origin and that v(0) =

(0, . . . , 0, 1). By the existence and uniqueness theorem of ODE’s for any x sufficiently
close to the origin there exists an initial condition y on the hyperplane xn = 0 and a
time s so that the solution Ψ(s, y) = x. The map Ψ : (s, y) → x is differentiable and
has a differentiable inverse at least for x sufficiently close to the origin. Just run the time
backwards until one hits the hypersurface. As a consequence

∂Ψ
∂s

,
∂Ψ
∂yk

, k = 1, . . . , n− 1 (4)

are linearly independent close to the origin. Thus, there exists a vicinity V of the origin
where we may choose (s, y) as a new coordinate system.

How does the differential equation (2) look like in this new coordinate system? Let
x(t) be a solution that lives for small times in V . We would like to find s(t), y(t), with y(t)
on the hyperplane so that x(t) = Ψ(s(t), y(t)). Taking the derivative with respect to t we
get

v(x(t)) =
d

dt
x =

∂Ψ
∂s

ds

dt
+

n−1∑
k=1

∂Ψ
∂yk

dyk

dt
.

Recall that by the definition of the flow Ψ

∂Ψ
∂s

(s(t), y(t)) = v(x(t)

and hence we have that
∂Ψ
∂s

(
ds

dt
− 1) +

n−1∑
k=1

∂Ψ
∂yk

dyk

dt
= 0 .

By the linear independence noted in (4) we must have that

ds

dt
= 1 ,

dyk

dt
= 0 , k = 1, . . . , n− 1 .

The functions yj(x), j = 1, . . . , n−1 are precisely the first integrals. They are independent
since the functions yj are independent. Note, that the choice of the hyperplane was not
important. Any hypersurface passing through the origin would have done the job as long
as v(x) is not tangent to this hypersurface at the origin.

Definition 3: Characteristics
The equation (2) is called the characteristic equation and its solutions are called the char-
acteristics associated with the PDE (1).

We have seen that the solutions of the PDE (1) are constant along characteristic lines.
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What is clear so far is that the PDE (1) if it has solutions, it has infinitely many.
Certainly one is not just interested in the general solution but in those that satisfy certain
initial conditions.

Definition 4: (Cauchy Problem)
The PDE

v(x) ·Du(x) = 0 in U

together with the condition
u = g on Γ ,

where Γ is a hypersurface in U , is called the Cauchy Problem.

The Cauchy problem is not always well defined, for suppose that a characteristic line
intersects Γ twice in the points x1 and x2 and g(x1) 6= g(x2) then no solution exists to
this problem. Of course, in a small neighborhood around x1 this problem maybe does
not manifest itself. Another problem is that the characteristic curves may tangent to the
surface Γ. This is quite serious, in fact there can be no solution, not even locally. Say, the
characteristic curve touches Γ at the point x1. This means that v(x1) is tangent to the
surface Γ. Picking an initial condition such that v(x1)·Dg(x1) 6= 0 contradicts immediately
the PDE.

Thus we make the following

Definition 5
The hypersurface Γ is called noncharacteristic at a point x0, if v(x0) is not tangent to the
surface.

Any definition should be the hypotheses of a good theorem, and hence we have

Theorem 3
Assume that Γ is noncharacteristic at the point x0. The there exists a neighborhood around
x0 so that the Cauchy problem has a unique solution.

This can be understood as follows. Pick a point x and solve the system (2) with the x
as the initial condition. If x is close enough to x0 by either moving forward or backward in
time the solution will hit the surface Γ at precisely one point y(x) at time t(x). Since the
solution of the PDE (1) is constant along characteristic lines (here we use that the surface
Γ is non characteristic), we have that u(x) = g(y(x)).

This theorem in principle tells us how to calculate the solution. Certainly, if the
solutions of the ODE can be calculates explicitely one can use a complete set of first
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integrals to find the solution of the Cauchy problem. Otherwise one has to resort to
numerical methods.

Example 3
Consider the PDE

yux − xuy = 0

subject to the initial condition u(x, x2) = g(x), for all x > 0. The characteristic equations
are

x′ = y , y′ = −x .

The solution curves are concentric circles and the first integrals are of the form f(x2 +y2).
The initial condition says that f(x2 + x4) = g(x) and hence

f(s) = g

(√√
s + 1/4− 1/2

)
and

u(x, y) = g

(√√
x2 + y2 + 1/4− 1/2

)
.

Example 4
Example 1 revisited. Consider

xux + yvy + xy(1 + z2)uz = 0

in all of IR3 subject to the initial condition

u(x, y, 0) = g(x, y) ,

for some given function g. The associated system of ODE’s has been solved before with
the first integrals

x/y, and xy − 2 tan−1(z) .

Thus, the solution must be of the form

u(x, y, z) = f(x/y, xy − 2 tan−1(z) .

The initial condition requires that

f(x/y, xy) = g(x, y)

which leads to
f(s, t) = g

(
±
√

st,±
√

t/s
)

,

where any combinations of the signs are allowed. Therefore the solution is given by

u(x, y, z) = g

(
±
√

x2 − 2 tan−1(z)/y,±
√

y2 − 2 tan−1(z)/x

)
,

where the signs are the same as of the variables x and y. Note that the solution does not
exist for all values of x, y, z. Certainly, one has to require that the signs of the expressions
under the root signs must be nonnegative.
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