Solutions for Test 2

Problem 1

a) Use the ratio test. The sequence converges.
b) Use the comparison test. The sum is bounded above by
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The integral can be easily compute using the substitution v = In(z) and equals 1/ 1In(2).

c¢) Note that
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Now you know either from class or using I’Hospital’s rule that
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Hence the individual terms do not go to zero and the sequence cannot converge.

Problem 2
a) The ratio test leads to computing
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Thus, the series converges absolutely in the interval (—e,e).

b) Ratio test: Series converges absolutely for |z + 1| < e which is the same as saying
that it converges on the interval (—e — 1,e — 1).

c¢) Use the root test and note that
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Thus the series converges absolutely on the interval (—e,e).

Problem 3
a) Note first that
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b) The power series expansion is
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c) Use that
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is an alternating series. Therfore you know that
1
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and \
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Integrating both sides of these inequalities yields
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Thus we get that the integral equals to 4/5 with an accuracy 1/18.
Problem 4

The general solution of the differential equation is
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where C' is an arbitrary constant. The solution that satisfies y(1) = 2 is then given by
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y(z) = 3 + 3¢ .



