Preptest for Test III, Calculus II, Math1502, March 14, 2000

I: The questions in this problem check your knowledge of some of the definitions.

a) Find the vector that when added to

$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad \text{yields} \begin{bmatrix} 3 \\ 1 \\ 7 \end{bmatrix} .$$

b) Which of the following transformations from the plane to the plane is linear. Give a simple linear one and a nonlinear one.

$$T(\vec{x}) = \begin{bmatrix} x^2 - y \\ x - y \end{bmatrix} .$$

$$y_1 = ax_1 + bx_2, \quad y_2 = cx_1 + dx_2$$
.

c) Find the length of the vector

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

d) Find the angle between two vectors

$$\begin{bmatrix} 2/3 \\ -1/3 \\ -1/3 \end{bmatrix}, \begin{bmatrix} -1/3 \\ 2/3 \\ -1/3 \end{bmatrix}.$$

II: Find all the solution of the following systems of equations. In each case state whether there is exactly one solution, no solution or infinitely many solutions.

$$x + 2y + 3z = 6$$

$$a) x + y = 2$$

$$x - y + 2z = 2$$

$$x + 2y + 3z = 6$$

$$x + y = 2$$

$$y + 3z = 4$$

$$x - y + z = 1$$

$$c) \quad x + y - z = 2$$

$$x + 5y - 5z = 3$$

III: Consider the matrix N given by

$$N = \begin{bmatrix} 1, -1 \\ 1, -1 \end{bmatrix}$$

- a) Compute all powers of N.
- b) Compute all the positive powers of A = I + N where I is the 2×2 idendity matrix.
 - c) Compute the inverse of the matrix A = I + N.
 - d) Compute also all the negative powers of A.

Consider the matrix N given by

$$N = \begin{bmatrix} 0, 1, 0 \\ 0, 0, 1 \\ 0, 0, 0 \end{bmatrix}$$

- a) Compute all powers of N.
- b) Compute all the powers of A = I + N where I is the 3×3 idendity matrix.

IV:) Given are three vectors

$$\vec{a} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 3 \\ -7 \\ 5 \end{bmatrix} \quad \vec{c} = \begin{bmatrix} 1 \\ -5 \\ 2 \end{bmatrix}$$

a) Find a vector \vec{n} normal to the plane spanned by the vectors \vec{a} and \vec{b} .

- b) Find the distance between the tip of vector \vec{c} and the plane spanned by \vec{a} and \vec{b} .
- c) Find the volume of the parallelepiped spanned by the vectors \vec{a}, \vec{b} and $\vec{c}.$
- V: The transformation from the plane into itself consisting of rotating a vector by an angle θ and then stretching the resulting vector by a factor of λ , is a linear transformation. Find the associated matrix.