Test I for Calculus II, Math 1502, September 12, 2000

Name:

This test is to be taken without calculators and notes of any sorts. The allowed time is 50 minutes. Write answers in boxes where provided. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414....

I: $(25 \text{ pc} \\ a)$: $\cos(x)$.			fourth	order	Taylor	polynomia	$P_4(x)$	for th	ne function	
b) 1	Using	the	above	${ m result},$	comput	e an approx	kimate y	value f	for $\cos(1)$.	
c) (imates o			$ ext{timate}$	on hov	v accura	te the value	e compu	ited in	b) approx-	

II: (25 points) Compute the limits:

$$\lim_{x \to 0} \frac{1 + x - e^x}{x(e^x - 1)}$$

$$\lim_{n \to \infty} (n + e^n)^{1/n}$$

$$\lim_{x \to 0} \frac{\cos(x) - \frac{1}{2}(e^x + e^{-x})}{x^2}$$

III: (25 points) Which of the following series is convergent or divergent.

$$\sum_{k=1}^{\infty} k e^{-k^2} .$$

$$\sum_{k=2}^{\infty} \frac{k}{k^2 - 1} \ .$$

c) Evaluate the series

$$\sum_{k=-2}^{\infty} \left(\frac{3}{4}\right)^k .$$

IV: (25 points) Decide which of the following improper integrals exists and compute its values if it exists:

$$\int_0^2 \frac{1}{(1-x)^2} \mathrm{d}x$$

$$\int_0^{1/2} \frac{1}{x \ln(x)} \mathrm{d}x$$

$$\int_0^\infty e^{-x} \mathrm{d}x$$