Solutions for Test 2

I: a) Comparison test and the bound
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yields convergence.

b) This is an alternating sum. Since
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we see that % tends to zero and is decreasing. Therefore the series converges.

c¢) Using the root test, we to compute
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Therefore the series converges.

IT: a) The series is a geometric series and converges precisely when
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which leads to
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for the interval of convergence.
b) Here we use the ratio test and get
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which converges to zero as k — oo no matter how large x is. Thus, the interval of
convergence is the whole real line.

c¢) The key observation is that
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and hence using again the ratio test
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we see that this converges to |z| as k& — oo. Thus we know that the series converges for
|z| < 1. To see what happens at the endpoints note that
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converges and hence the interval of convergence is given by [—1, 1].

The series

ITI: a) Note
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And hence the result is
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b) The power series for the exponential function is
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Subtracting 1 and dividing by ¢ yields
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Integrating this function from 0 to x yields
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c) We have to calculate
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Thus we have to choose N = 10.
IV: a) The differential equation is
P
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b) The solution is given by
P(t) = 2000 (1 - e—t/500> .



