Name:

This test is to be taken without graphing calculators and notes of any sorts. The allowed time is 50 minutes. Write answers in boxes where provided. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414....

Vector- or Cross product:

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

I: The questions in this problem check your knowledge of some of the definitions and no partial credit will be given. Each question counts 5 points.

a) Add the vectors

$$\begin{bmatrix} 2\\4\\6 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -3\\-5\\-7 \end{bmatrix} .$$

b) Find the angle between the vectors

$$\begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

c) Find the length of the vector

$$\begin{bmatrix} \sqrt{3} \\ \sqrt{6} \\ 4 \end{bmatrix}$$

d) Find the vector that when added to

$$\begin{bmatrix} 2\\4\\6 \end{bmatrix} \quad \text{yields} \begin{bmatrix} 3\\1\\4 \end{bmatrix} .$$

e) True or false: For two vectors \vec{a} and \vec{b} , that have the same length, $\vec{a} - \vec{b}$ is always perpendicular to $\vec{a} + \vec{b}$.

II: (20 points) A linear transformation T of the plane into itself maps the vector

$$\vec{f_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 to $\vec{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$,

and the vector

$$\vec{f_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 to $\vec{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

a) Find $T(\vec{f_1} + \vec{f_2})$, $T(\vec{e_1})$, $T(\vec{f_1} - \vec{f_2})$ and $T(\vec{e_2})$.

b) Find the matrix [T] associated with this linear transformation.

III: (30 points) Solve the following systems of equations by row reduction:

$$3x - y + 4z = 13$$

$$x + y + 2z = 9$$

$$3x + 3y + z = 12$$

$$3x - 3y + z = -2$$

$$x - 2y + z = -3$$

$$2x - y = 1$$

$$3x - 3y + z = 1$$

$$x - 2y + z = 1$$

$$2x - y = 1$$

IV: (25 points) a) Calculate the area of the parallelogram spanned by the vectors

$$ec{a} = egin{bmatrix} -4 \ 3 \ 0 \end{bmatrix} \quad ext{and} \quad ec{b} = egin{bmatrix} 1 \ -2 \ 1 \end{bmatrix} \; .$$

b) Calculate the volume of the parallelepiped that is spanned by the vectors \vec{a} , \vec{b} and the vector \vec{c} .

$$\vec{c} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 .

c) Compute the distance between the tip of the vector \vec{c} and the plane spanned by \vec{a} and \vec{b} .

d) Find a vector \vec{d} that is perpendicular to \vec{a} and \vec{b} such that the parallelepiped spanned by \vec{a} , \vec{b} and \vec{d} has the same volume as the one spanned by \vec{a} , \vec{b} and \vec{c} .