#### Final Exam, Calculus II, Math1502, May 4, 2000

#### Name:

This test is to be taken without graphing calculators and notes of any sorts. The allowed time is 2 hours and 50 minutes. Write answers in boxes where provided. Provide exact answers; not decimal approximations unless you are explicitly asked to do so! For example, if you mean  $\sqrt{2}$  do not write 1.414.... Please show all your work because otherwise credit cannot be given.

I: (15 points) Compute the integral

$$\int_0^1 \frac{\sin(y)}{y} \, \mathrm{d}y$$

to three digits accuracy.

II: (15 points) a) Compute the limit

$$\lim_{x \to 0} \frac{\ln(1+x) + e^x - 2x - 1}{x^3} \ .$$

b) Find the 4-th Taylor polynomial (around 0) of the function  $\ln(\cos(x))$  .

III: (15 points) a) Does the following series converge?

$$\sum_{k=1}^{\infty} \frac{(2k+1)^{2k}}{(5k^2+1)^k} .$$

b) Find the interval of convergence of the power series

$$\sum_{k=0}^{\infty} \frac{k!}{k^k} (x-1)^k \ .$$

IV: (15 points) Solve the differential equations

$$xy' + 2y = \frac{1}{x}$$
 with initial condition  $y(1) = 2$ 

and

$$y^2y'=x^2$$
 with initial condition  $y(0)=1$  .

V: (15 points) Find all the solutions of the following systems of equations.

$$a) \quad \begin{array}{c} x + 3y - z = 1 \\ 2x + 4y = 1 \\ 3x + 5y + z = 1 \end{array}$$

and

$$3x + 5y - 5z = 1$$

$$x - 7y + 33z = 1$$

$$-2x + y - 14z = 2$$

VI: (15 points) Find the inverse of the matrix

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 - 2 \\ 2 & 2 & 1 \end{bmatrix}$$

VII: (15 points) Consider the matrix

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \\ -3 & -9 & -6 \end{bmatrix}$$

Find a basis for the column space and a basis for the null space. Also, write these spaces in equation form.

VIII: (20 points) Find the solution of smallest length that satisfies the system of equations

$$\begin{aligned} x + 2z &= 1 \\ x + y - z &= 2 \end{aligned} .$$

**IX:** (20 points) A  $3 \times 3$  matrix A satisfies the equation

$$A^2 - A - 2I = 0$$

where I is the  $3 \times 3$  identity matrix.

- a) Find the possible eigenvalues.
- b) Are there any repeated eigenvalues?
- c) Sketch the curve defined by the quadratic form

$$x^2 + y^2 - 4xy = 1 .$$

X: (20 points) Compute the eigenvalues and eigenvectors of the following matrices:

a)

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

b)

$$B = \begin{bmatrix} 10 & 2 \\ 8 & 4 \end{bmatrix}$$

$$C = \begin{bmatrix} 10 & 2 \\ -8 & 2 \end{bmatrix}$$

**XI:** (15 points) A  $2 \times 2$  matrix A has the eigenvalues  $\lambda_1 = 1$ ,  $\lambda_2 = -1$  and the corresponding eigenvectors

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and  $\vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ .

a) Find U and D diagonal such that

$$A = UDU^{-1} .$$

- b) Compute A.
- c) Compute  $A^{30}$ .

XII: (20 points) Find the solution of the system of differential equations

$$x^{'} = 3x + 4y$$
,  $y^{'} = 4x - 3y$ 

with initial condition x(0) = 1 and y(0) = 0.