
Solutions to Practice Final for Calculus II, Math 1502, December 5, 2009

Name:

This test is to be taken without calculators and notes of any sorts. The
allowed time is 2 hours and 50 minutes. Provide exact answers; not decimal
approximations! For example, if you mean

√
2 do not write 1.414 . . .. Show

your work, otherwise credit cannot be given.

Reminder: Final exam Dec 7th (Mon) 2:50pm - 5:40pm Howey
(Physics) L3

Block 1:

1: Calculate to three digits accuracy∫ 2

1

e
1
x dx .

Solution: Recall

ey =
n∑

k=0

yk

k!
+

1
n!

∫ y

0

ez(y − z)ndz

and hence∫ 2

1

e
1
x dx =

n∑
k=0

∫ 2

1

1
xkk!

dx +
1
n!

∫ 2

1

[∫ 1
x

0

ez(
1
x
− z)ndz

]
dx .

We denote the last term in the formula as Rn, the remainder and estimate
it now. Since

1
n!

∫ 1
x

0

ez(
1
x
− z)ndz ≤ e

1
x

1
xn+1(n + 1)!

and 1/x ranges between 1/2 and 1 we find

Rn ≤
∫ 2

1

e
1
x

1
xn+1(n + 1)!

dx ≤ e

∫ 2

1

1
xn+1(n + 1)!

dx



≤ 3
n(n + 1)!

(1− 1
2n

) ≤ 3
n(n + 1)!

.

Now we choose n so that the last expression is ≤ 10−4. If we use n = 5 we
get

Rn ≤
1

1200
and using n = 6 we get

Rn =
3

6 · 7!
=

3
30240

< 10−4 .

Hence the expression

6∑
k=0

∫ 2

1

1
xkk!

dx =
6∑

k=0

1
k!

∫ 2

1

1
xk

dx

= 1 + log 2 +
6∑

k=2

1
(k − 1)k!

(1− 1
2k−1

) .

yields the desired approximation.

2: a) Compute

lim
x→0

ln(cos x)
x2

Solution: L’Hôpital’s rule or Taylor’s theorem yields

−1
2

.

b) Calculate the integral provided it exists∫ ∞
1

sin( 1
x )

x2
dx .

Solution: Consider first the integral∫ L

1

sin( 1
x )

x2
dx



which, using the substitution y = 1/x can be transformed into∫ 1

1
L

sin(y)dy = − cos(y)
∣∣ 1

L

1
= cos(1)− cos(

1
L

)→ cos(1)− 1 ,

as L→∞. Hence the improper integral exists and equals

cos(1)− 1

Block 2:

3: a) Find the interval of convergence (including the endpoints) of the
power series

∞∑
k=1

1√
k

(x− 1)k .

Solution: The series converges absolutely in (0, 2). At 2 it diverges. Note
that 1/

√
k is positive decreasing. Hence at 0, being an alternating series, it

converges.

b) Does the series
∞∑

k=1

(−1)k ln k

k

converge? If it does converge, give a reasonable estimate on n so that sn,
the n-th partial sum, and the limit differ by 10−5.

Solution: The function
ln x

x

has the derivative
1− ln x

x2

and hence is a decreasing function for x ≥ e. Moreover, the function tends
to zero as x→∞. Hence the series converges and we find that the limit L
satisfies

|L− sn| ≤
ln(n + 1)

n + 1



Pick n = 107 − 1 and note that ln 107 = 7 ln 10. Now e3 > 10 and hence
ln 107 < 21. Thus

ln(107)
107

<
21
107

< 10−5 .

4: Solve the differential equations

xy′ + 5y = x3 , y(1) = 1

and
y′ = x(1 + y2) , y(0) = 0 .

Solution: Integrating factor is x4 and therefore multiplying the first differ-
ential equation by x4 yields

x7 = x5y′ + 5x4y = (x5y)′ ,

which upon integration yields

x5y =
x8

8
+ C ,

or

y(x) =
x3

8
+

C

x5
.

The initial condition determines C = 7
8 and

y(x) =
x3

8
+

7
8x5

.

The second differential equation we solve by separation of variables

y′

1 + y2
= x ,

which can be written as

d

dx
tan−1(y) =

d

dx

x2

2
.



This yields

tan−1(y) =
x2

2
+ C .

The initial condition requires C = 0 and hence

y(x) = tan(
x2

2
) .

Block 3:

5: Let f be a linear transformation from R3 to R3 such that

f

 1
0
1

 =

 2
1
1

 , f

 2
1
3

 =

−1
1
−2


and

f

 3
0
1

 =

 0
−1
1

 .

Find the matrix associated with f .

Solution: The matrix Af associated with the linear transformation f must
satisfy AfB = C where

B =

 1 2 3
0 1 0
1 3 1

 , C =

 2 −1 0
1 1 −1
1 −2 1

 .

Using row reduction we calculate the inverse of B

B−1 =
1
2

−1 −7 3
0 2 0
1 1 −1


and since Af = CB−1, we find

Af =

−1 −8 3
−1 −3 2
0 −5 1

 .



6: Let

A =

 1 2 3
4 4 4
3 2 1

 .

Is there a vector ~b ∈ R3 for which A~x = ~b has a solution? Either find it or
explain why it does not exist.

Solution: Row reducing the augmented matrix 1 2 3 | x
4 4 4 | y
3 2 1 | z


leads to  1 2 3 | x

0 −4 −8 | y − 4x
0 0 0 | z + x− y

 .

Thus the vector x
y
z


is in Img(A) if and only if

z + x− y = 0 .

Block 4:

7: Find the QR factorization of the matrix

A =

 2 1 4
2 2 2
1 1 1


and solve the least square problem A~x = ~b where

~b =

 1
1
1

 .



Is this least square solution unique? If not find the one that has least length.

Solution: The Gram-Schmidt procedure yields

Q =
1
3

 2 −5√
5

2 4√
5

1 2√
5


and since R = QT A

R =
1
3

[
9 7 13
0 5√

5
− 10√

5

]
To find the least square solution we calculate

QT~b =
1
3

[
5
1√
5

]
,

and solve R~x = QT~b

~x(s) =

 2
5
1
5
0

+ s

−3
2
1

 .

The least square solution is not unique.
To find the solution of least length, call it ~x0, there are two possibilities.
The first is to calculate the square of the length of the vector ~x(s)

(
2
5
− 3s)2 + (

1
5

+ 2s)2 + s2

minimizing this function with respect to s yields

s =
2
35

and

~x0 =
1
35

 8
11
2

 .



Another way of getting to this result is to split the vector

~x0 :=

 2
5
1
5
0

 .

into two components, one ~x0
|| parallel to the Ker(A) and the other ~x0

⊥ per-
pendicular to Ker(A). The vector ~x0

⊥ is the desired answer. Note that
Ker(A) is one dimensional and is spanned by the vector−3

2
1

 .

The projection onto this one dimensional subspace is given by

P :=
1
14

 9 −6 −3
−6 4 2
−3 2 1


and the projection onto the complement of Ker(A) is given by

I − P =
1
14

 5 6 3
6 10 −2
3 −2 13


and

~x0
⊥ = (I − P )~x0 =

1
35

 8
11
2

 .

8: Find a basis for the kernel and the image for the matrix

A =

 1 2 1
2 0 1
3 2 2


Give an equation for the image as well. Also, find the orthogonal projections
onto Img(A) and Ker(A).



Solution: Consider the augmented matrix 1 2 1 | x
2 0 1 | y
3 2 2 | z


which upon row reduction leads to 1 2 1 | x

0 −4 −1 | y − 2x
0 0 0 | z − x− y

 (∗)

From this we see that a vector is in Img(A) if and only if it is in the plane
x + y − z = 0. A basis for this plane is given, e.g., by−1

1
0

 ,

 1
0
1

 .

An orthonormal basis for Img(A) can be found using the Gram-Schmidt
procedure whidh yields

~u1 =
1√
2

−1
1
0

 , ~u2 =
1√
6

 1
1
2


and if we set

Q =


−1√

2
1√
6

1√
2

1√
6

0 2√
6


the orthogonal projection P onto Img(A) is given by

P = QQT =
1
3

 2 −1 1
−1 2 1
1 1 2

 .

The kernel of the matrix A is one dimensional. Setting x = y = z = 0 in
(*) we can use backward substitution and find that Ker(A) is spanned by
the normalized vector

~u =
1√
21

 2
1
−4

 .



The projection onto Ker(A) is then given by

~u~uT =
1
21

 4 2 −8
2 1 −4
−8 −4 16

 .

Block 5:

9: Sketch the curve defined by the equation

10x2 + 8xy + 4y2 = 12 .

Solution: The equation can be written as ~x ·A~x = 12 where

A =
[

10 4
4 4

]
.

The characteristic polynomial s given by t2 − 14t + 24 = (t − 12)(t − 2).
Thus, we have the eigenvalues 12 and 2 with the corresponding eigenvectors

~u1 =
1√
5

[
2
1

]
, ~u2 =

1√
5

[
−1
2

]
.

We can now diagonalize the matrix A and get A = UDUT where

U =
1√
5

[
2 −1
1 2

]
and

D =
[

12 0
0 2

]
.

If we rewrite the equation in terms of the variables

UT ~x =
[

x̃
ỹ

]
=: ~y



we find

12x̃2 + 2ỹ2 = 12 or x̃2 +
ỹ2

6
= 1 ,

which is an ellipse with the large semi axis of length
√

6 along the ỹ axis
and the short semi axis of lenght 1 along the x̃ axis.

To se this in the x − y picture, just draw the same figure but with the x̃
axis replaced by the axis along the vector ~u1 and the ỹ axis replaced by the
axis along the vector ~u2.

10: Find the solution of the system of differential equations

x′ = x + y , y′ = −x + 3y

with the initial conditions x(0) = 2 , y(0) = 1.

Solution: Write this system as ~x′ = A~x where

A =
[

1 1
−1 3

]
, ~x(0) =

[
2
1

]
.

This matrix has the characteristic polynomial

t2 − 4t + 4 = (t− 2)2 ,

and hence the eigenvalue 2 has algebraic multiplicity 2. Now we note that

N := A− 2I =
[
−1 1
−1 1

]
and N2 is the zero matrix. Now

eAt =
∞∑

k=0

tk

k!
Ak

and since
Ak = 2kI + k2k−1N



we have that

eAt =
∞∑

k=0

tk

k!
(2kI + k2k−1N) =

∞∑
k=0

(2t)k

k!
I +

∞∑
k=0

k2k−1tk

k!
N

= e2tI + te2tN .

Thus

eAt = e2t

[
1− t t
−t 1 + t

]
.

The solution is then

~x(t) = eAt~x(0) = e2t

[
2− t
1− t

]
.

11: Diagonalize the matrix  17 −2 −2
−2 14 −4
−2 −4 14


Solution: The characteristic polynomial is

[(17− t)(10− t)− 8](18− t)

with roots 18 and 9. The eigenvalue 9 has the eigenvector

1
3

 1
2
2


and the eigenspace of the eigenvalue 18 is spanned by

1
3

 2
1
−2

 ,
1
3

 2
−2
1

 .



A =
1
3

 1 2 2
2 1 −2
2 −2 1

 9 0 0
0 18 0
0 0 18

 1
3

 1 2 2
2 1 −2
2 −2 1


12: Solve, i.e., calculate an for all n, the finite difference equation

an+1 = 3an + 4an−1 , n = 0, 1, 2, . . .

with the initial condition a0 = 1, a1 = 1.

Solution: Set

~xn =
[

an

an−1

]
then

~xn+1 = A~xn

where

A =
[

3 4
1 0

]
.

An =
1
5

[
4 1
1 −1

] [
4n 0
0 (−1)n

] [
1 1
1 −4

]
=

1
5

[
4n+1 + (−1)n 4n+1 − 4(−1)n

4n − (−1)n 4n + 4(−1)n

]
.

Hence

an =
2 · 4n − 3(−1)n−1

5
, n = 0, 1, 2, · · ·


