Practice Test I A Solutions for Calculus II, Math 1502, September 1, 2009
Name:

This test is to be taken without calculators and notes of any sorts. The
allowed time is 50 minutes. Provide exact answers; not decimal approxi-
mations! For example, if you mean v/2 do not write 1.414.... Show your
work, otherwise credit cannot be given.

I: (25 points)
a) Find the 12-th order Taylor polynomial Pjo(x) for the function

cos(x?).
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and hence setting y = 22 we get
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b) Using the above result, compute an approximate value for
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This integral equals
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c) Give an estimate on how accurate the value computed in b) approx-

imates the integral.
The remainder is given by
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which is in magnitude less than
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IT: (25 points) Compute the limits:

a)
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b)
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ITI: (25 points) Decide which of the following improper integrals exists and
compute its values if it exists:

)
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Does not exist. The problem is at z =1

b)
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The sine function behaves as x for + — 0 and hence the convergence issue
is the same as for the integral
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which does not converge.
(oo
/ xe *dx
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c)
This integral exists and equals to 1.

d) Extra credit:
/ cos(z?)dx
1

Set x = /s and write the integral
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Integrating by parts yields
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As L tends to infinity the first term converges to

_sin(1)
2

whereas the second term converges since 1/5%/2 is integrable on [1, 00) using
the comparison test.

I'V: (25 points) Which of the following series is convergent or divergent.

a)
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Divergent since
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is divergent.
b)
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Is divergent since the summands behave as 1/k for large k and > 1/k does

not converge.
c) Evaluate the series
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