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Topics for Test 4

You should be familiar with the following concepts:

Subspace S of Rn, which is a subset of Rn with the property that with any two vectors

~x, ~y ∈ S, ~x + ~y ∈ S and for all a ∈ R and all ~x ∈ S, a~x ∈ S. Important examples are the

kernel of an m× n matrix A,i.e., Ker(A) ⊂ Rn and Img(A) ⊂ Rm, the image of an m× n

matrix A.

A spanning set of a subspace S ⊂ Rn, which is a collection of vectors so that every vector

in S can be written as a linear combination of them.

A collection of vectors is linearly independent of no vector of this collection can be written

as a linear combination of the others. Alternatively, this means that the matrix A which has

those vectors as columns has a kernel Ker(A) that consists only of the zero vector.

A basis of a subspace S is a collection of vectors that spans S and is linearly independent.

Every basis of the subspace S has the same number of vectors and this number is called the

dimension of S.

For an m× n matrix A there are is the important dimension formula

dim(Ker(A)) + dim(Img(A)) = n

If S is a subspace of Rn then the orthogonal complement of S, whcih is denoted by S⊥

consists of all vectors that are perpendicular to every vector in S. The important theorem

here is that

[S⊥]⊥ = S .

If A is an m× n matrix then

Ker(A)⊕ Img(AT ) = Rn

Ker(AT )⊕ Img(A) = Rm
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The meaning of these formulas is that

Ker(A)⊥ = Img(AT )

both are subspaces of Rn. Likewise,

Img(A)⊥ = Ker(AT ) .

An n× n matrix whose kernel consists only of the zero vector is invertible.

* * *

The above concepts have a computational side to them.

Row reduction leads you to see the pivotal columns and the non-pivotal columns. For an

m × n matrix A, the pivotal columns are a basis for Img(A). The number r(A) of those

columns, is called the rank of the matrix A, which equals to the dimension of the image

of A, i.e.,

dim(Img(A)) = r(A) .

The number of non-pivotal columns determines the number of free variables which is the

same as dim(Ker(A)).

You can check whether the vectors ~v1, ~v2, . . . , ~vk are linearly independent by computing the

kernel of the matrix A = [~v1, ~v2, . . . , ~vk]. If the kernel consists only of the zero vector, then

the vectors are linearly independent. So, row reduction is important!

Very important are the least square problems. The normal equation

AT A~x = AT~b

has always a solution, which in general is not unique. If ~x∗ denotes the solution, then

A~x∗
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is the vector in Img(A) that is closest to the vector ~B.

This leads to the projection onto Img(A),

P = A(AT A)−1AT

A nicer way of computing such projections as the Gram-Schmidt procedure, which allows

from a spanning set ~v1, . . . , ~v` to obtain an orthonormal basis ~u1, . . . , ~uk where k ≤ `.

Note that k = ` if the v-vectors form a basis.

The matrix

Q = [~u1, . . . , ~uk]

is an isometry and the matrix A = [~v1, . . . , ~v`] can be written as

A = QR

the QR factorization where R is an upper triangular matrix. We have that

R = QT A .

If a subspace S is spanned by ~v1, . . . , ~v` then

QQT

is the orthogonal projection onto Img(A).

Least square problems can be elegantly solved once the QR factorization is available. The

equation

A~x = QQT~b

has always a solution, since QQT~b ∈ Img(A). Hence

QT A~x = R~x = QT~b

and R is already in row reduced form.


