Name:		
Section:		
Name of TA:		
allowed time is 5 mations! For exa work, otherwise c Write your name	0 minutes. Provide example, if you mean $\sqrt{2}$ deredit cannot be given. me, your section numbers.	lators and notes of any sorts. The ct answers; not decimal approxion not write 1.414 Show your nber as well as the name of est. This is very important.

Test I for Calculus II, Math 1502 G1-G5 , September 14, 2010

Section:

Name of TA:

I: (25 points) Consider the function $f(x) = \sqrt{4+x}$.

a) (14 points) Find the 2nd order Taylor polynomial $P_2(x)$ for f(x) and the corresponding remainder in Lagrange form.

$$f'(x) = \frac{1}{2}(4+x)^{-1/2}$$
, $f''(x) = -\frac{1}{4}(4+x)^{-3/2}$, $f'''(x) = \frac{3}{8}(4+x)^{-5/2}$.

and hence

$$f(0) = 2$$
, $f'(0) = \frac{1}{4}$, $f''(0) = -\frac{1}{32}$.

Thus,

$$P_2(x) = 2 + \frac{1}{4}x - \frac{1}{64}x^2$$

and the remainder is given by

$$\frac{f'''(c)x^3}{3!} = \frac{1}{16(4+c)^{5/2}}$$

where c is some number between 0 and x.

b) (3 points) Using the above result compute an approximate value, call it A, for $\sqrt{5}$

$$A = P_2(1) = 2 + \frac{1}{4} - \frac{1}{64}$$

c) (8 points) Give an estimate on how accurate the value computed in b) approximates $\sqrt{5}$, i.e., give a bound on

$$|\sqrt{5}-A|$$
.

$$|\sqrt{5} - A| \le \frac{1}{16(4+c)^{5/2}} \le \frac{1}{16 \times 2^5} = \frac{1}{2^9}$$
.

Section:

Name of TA:

II: (25 points) a) (9 points) Let f(x) be a continuous function on the real line. Compute

$$\lim_{x \to 0} \frac{\int_{-x}^{x} f(y) dy}{2x} .$$

Answer:

Compute as well: b) (9 points)

$$\lim_{x \to 0} \frac{e^{(e^x)} - e}{x} ,$$

Answer:

$$\lim_{x \to 0} \frac{e^{(e^x)} - e}{x} = \lim_{x \to 0} \frac{e^{(e^x)} e^x}{1} = e ,$$

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + x + 1}}{\sqrt{2x^2 + 1}} \ .$$

$$\frac{1}{\sqrt{2}}$$

Section:

Name of TA:

III: (25 points) Consider the integrals

$$\int_0^\infty x e^{-x^2} \mathrm{d}x \ , \quad \int_2^\infty \frac{1}{x \log x} \mathrm{d}x$$

Write down the definition what mean by 'this integral exists' and then decide whether they indeed exist. Compute their values if they exist. (6 points for each)

Solution:

$$\int_0^\infty x e^{-x^2} dx = \lim_{A \to \infty} \int_0^A x e^{-x^2} dx = \lim_{A \to \infty} \frac{1}{2} \int_0^{A^2} e^{-s} ds$$
$$= \lim_{A \to \infty} \frac{1}{2} (1 - e^{-A^2}) = \frac{1}{2}$$

and hence the integral exists.

$$\int_{2}^{\infty} \frac{1}{x \log x} dx = \lim_{A \to \infty} \int_{2}^{A} \frac{1}{x \log x} dx = \lim_{A \to \infty} \int_{\log 2}^{\log A} \frac{1}{s} ds$$
$$= \lim_{A \to \infty} [\log(\log A) - \log(\log 2)]$$

which tends to $+\infty$ as $A\to\infty$. Hence the integral does not exist.

Using the comparison principle decide which of the two integrals below

exist:

b) (6 points)

$$\int_0^\infty \frac{1}{x + e^x} \mathrm{d}x$$

Solution: We expect that this integral exists since e^x grows very fast at ∞ and the denominator does not vanish anywhere. Split the integral int one from 0 to say 1 and an integral from 1 to ∞ . Now

$$\int_0^1 \frac{1}{x + e^x} \mathrm{d}x$$

exists since the integrand is continuous and bounded. For the other part note that

$$\frac{1}{x+e^x} \le \frac{1}{e^x} = e^{-x}$$

and hence

$$\int_{1}^{A} \frac{1}{x + e^{x}} dx \le \int_{1}^{A} e^{-x} dx = 1 - e^{-A}$$

which converges as $A \to \infty$. Hence, by the comparison principle our integral exists.

$$\int_0^\infty \frac{1}{x + e^{-x}} \mathrm{d}x$$

This time we see that as x gets large the exponential function vanishes and we expect that the convergence of the integral is entirely determined by 1/x, which, of course, cannot be integrated from any positive number out to infinity. Note again that there is no problem otherwise; the denominator

is always strictly positive. Thus can forget about the integral from 0 to 1 On $[1, \infty)$ we know that

$$e^{-x} < 1 \le x$$

and hence

$$\int_0^A \frac{1}{x + e^{-x}} dx \ge \int_0^A \frac{1}{2x} dx = \frac{1}{2} \log(A)$$

which tends to $+\infty$ as $A \to \infty$. Thus our integral must also to $+\infty$ as A tends to ∞ . Thus, our integral does not exist.

Section:

Name of TA:

IV: (25 points) Which of the following series is convergent or divergent. If it is convergent, sum it.

a) (8 points)

$$\sum_{k=0}^{\infty} \frac{1}{(k+1)(k+3)} \ .$$

Solution:

$$\sum_{k=0}^{N} \frac{1}{(k+1)(k+3)} = \frac{1}{2} \sum_{k=0}^{N} \left[\frac{1}{k+1} - \frac{1}{k+3} \right]$$
$$= \frac{1}{2} \left[\sum_{k=1}^{N+1} \frac{1}{k} - \sum_{k=3}^{N+3} \frac{1}{k} \right] = \frac{1}{2} \left[1 + \frac{1}{2} - \frac{1}{N+2} - \frac{1}{N+3} \right]$$

which tends to 3/4 as $N \to \infty$. Hence the series is summable and it equals 3/4.

b) (8 points)

$$\sum_{k=0}^{\infty} \log \frac{k+2}{k+1} \ .$$

Note that

$$s_N = \sum_{k=0}^N \log \frac{k+2}{k+1} = \sum_{k=0}^N [\log(k+2) - \log(k+1)].$$

 $= [\log 2 + \log 3 + \dots + \log (N+2)] - [\log 1 + \log 2 + \dots + \log (N+1)] = \log (N+2)$ which diverges as $N \to \infty$.

c) (9 points) The following series converges

$$L = \sum_{k=2}^{\infty} \frac{2^k}{3^{k+1}}$$

Find L. Moreover, find the smallest n so that $0 < L - s_n < \left(\frac{2}{3}\right)^5$. Here s_n is the n-th partial sum.

Solution:

$$s_n = \sum_{k=2}^n \frac{2^k}{3^{k+1}} = \frac{4}{27} \sum_{k=0}^{n-2} \left(\frac{2}{3}\right)^k = \frac{4}{27} \frac{1 - \left(\frac{2}{3}\right)^{n-1}}{1 - \frac{2}{3}} = \left(\frac{2}{3}\right)^2 \left[1 - \left(\frac{2}{3}\right)^{n-1}\right]$$

As $n \to \infty$ this converges to

$$\left(\frac{2}{3}\right)^2$$

Moreover,

$$0 < \left(\frac{2}{3}\right)^2 - s_n = \left(\frac{2}{3}\right)^{n+1} < \left(\frac{2}{3}\right)^5$$

which implies that the smallest value for n is 5