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Problem 9

a) We use the Cauchy mean value theorm to prové the following verion of L'Hospital’s rule:

Proposition. Let U be an open interval in R and let f and g be differentiable real-valued functions on
U, with g and ¢ nowhere zero on U. Let a be an extremity of U. Suppose that
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Note (Cauchy): If f and g are continuous on {g, b] and differentiable on [a,b] and g(a) # g(b}, then
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for some ¢ € (a,b).
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for some ¢ € (a,b). Then
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b) Same as a), except that it is assumed that
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Proof. H the following limit exits,
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then by using Cauchy’s formula gain we have that fore >0 and fora<ez<z<z+ e
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for some ¢ € (a,0 + €).
Now taking z close to a and fixed and if the limit {Equation 7) exists, then we know that,
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for z < e < z implies
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so that
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Same as a), except U = {z € R : > «} for some o € R and
Jim f(z) = Lm g(z)=0. _ (12)
Proof. The proof is similar to part a), using the theorem from Problem 8 on page 91, namely
Jim £(z) = lim £:) (13)
where f1 : (0, % —Risgiven by fily)=f (f:r-) if the latter limit exist, our problem then becomes:
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which is a special case of L’Hospital’s rule from part a) with a = 0. Therefore,
@) AW L i) - A0 L file) L (@)
lim 2 = lim =24 = lim = lim = lim 15
5@ T ) IR aw) 00 R g @ )
forO<e<y. : [
Same as ¢), expect that it is assumed that
. 1 < 1 . _
li 7755 = I, o5 =0 or Jim f(6) = o). as
Proof. We have that
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Again proceeding as in part ¢) make the change of variable z = % so that
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such that,
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Problem 10

Proposition. Let U and V be open subsets of R and let g : U — V end f : V — R be functions. Let
xo € U such that g0 {(zo) and F™ (g(xo)) exist. Then (f o g)™(zo) exists.

Proof. Let f®)(z) be the n** derivative of f and similarly for g.

Note: If both f and g are continuous and differentiable, then by the proposition on page 103 (f o g)(x)
is differentiable and (f < g)(x) = f'(g(z))g'(z).

This will be proved by induction on (f ¢ g){xo).

Faet: f(g(xo)) and g'(o) exist by the assumption in the problem statement. Then for n =1,

(Fog)(w0) = lim L@ SO _ prigiayy g (a), (1)
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and for n =2,

(f 0 9)® (o) = % [F/{g(z0)}g’ (wo)] = F'(g(z0))g" (t0) + o' (z0) [ (9(x0))g’ (o)
= F'(g(x0))g" (z0) + F" (g(za))ly’ (zo)]*.

By assumption f'(g(20)), f7(9(20)), 9 (%0), and g"(xo) along with their sums and products are all dif-
ferentiable. (By the propositon on page 101 the sum or product of two differntiable functions is itself
differentiable.) Continuing on in this fashion, the nt* derivative will be some combination of sums and
products of derivatives of f and g of orders 1 through n.

For those interested, a closed form expresssion for E‘fgﬂ-( f o g){zp) is given by Fai di Bruno’s identity:
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where the sum is over all n-tuples of nonnegative integers (1, ...,My,), where 1.m; +2-ma+...+n-my, =1,
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Problem 11

Proposition. Let f : U = R, U € R twice differentiable at zq € U. If f'(zo) = 0 and f"(xs) < 0
(F"(zo) > 0) then the restriction of f to B(z,,d) attains a mazimum (minimum) of To.

Proof, We know from the definition of differentiability at z, and applying f'{ze) = 0 and f”(0) < 0 that
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If oy < o then (z — 20} > 0 and f/(z) < O satisfies the inequality. Therefore, f is decressing for x > zo.
Likewise, 2o > 2 then (2 — 2¢) < 0 and f’(z) > O satisfies the inequality. Therefore, f is increasing for
& < wp. Since f is increasing as we approach xp from the left and decreasing as we move away from xp
towards the right, f(zq) must be a maximum.

Note: Since f is differentiable at x,, it is also continous at ©p, meaning that if we restrict f to B(zyp,d),
then we know that there are no discontinuities for f restricted to that ball and our analysis holds.

Bt Is also true that if f(zp) > 0 that f(2g) is a minimum. To satisfy the inequality, f*(x) has to have -
the same sign as & — g, meaning that as x approaches xp from the left, f decreases and as & moves away
from wp to the right, f is increasing, i.e. f(zo) must be a minimum. (]

Problem 12
This problem can be split into the following three parts:
a) First,

Proposition. f:U = R,U € R is colled conwvex if no point on the line segement between any two points
of its graph lies below the graph.

Proof. We first need an inequality for testing whether a point on the line between any two points of its
graph lies below the graph,
florz+{1—7y) Saf@) + 1~y (25)

Let «y € [0, 1] and without loss of generality assume z < y. If v = 0, then f(y) < f{¥) and if y = 1, then
f(z) < f(z); therefore, our equation holds at the boundaries. Let -y = I (midpoint convex), then

£(3e+0-30) < 3@+ A= IW.

(26)
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It is a fact that the limit of a convex function is
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and this limit exists. We can the show that if f is convex it is also continuous on 7. For any € > 0,
there exits ¢ > 0 with [z — zo| < 4§, such that |f(z) — f(zo)] < . We can rewrite |f(z) — f(zo) as
|f{z + h} — f(z}], such that we have,

lim f(@+h) — f(2) = Jim LEXR I i gy (28)

meaning that when zp and z are close, so are f(zo) and f(z), which is by definition continuous.

It is known that if f is midpoint convex and continous (see “3. Convex Functions” in Distributions
and Fourier Transforms by Donoghue), then f is convex. We know this to be true, since if f were not
midpoint convex, Equation 25 would be invalid for v = %, which would contradict our assumption that
f is convex. Likewise, if f were midpoint convex, but not continous, a disontinuity of f on the interval
could contradict the inequality in Equation 25, which again would contradict our assumption that f is a
convex function on the open inverval U in R.
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Second,

Proposition. If f : U = R, U ¢ R is differentiable, then f is convez if no point of the graph lie below
any point of any tangent to the graph.

Proof. We showed in part a) that if f is convex, then f(yz+ (1 —7)y) <vf(z)+ (1 —~)f () holds. Let’s
assume this statement also holds for a differentiable function f. The inequality that we need to satisfy
is,

f@) = f@) + £ =)y — 2). (29)
Then, by replacing y = = + h we get,
flyz+ (=) <vf(@)+ 1 —MF)
flye+ (=M +h) <vfl@)+ (1 -7 flz+h)
Fl@+ (1 -7h)~ flz) <1 -z +h)— fz)) (30)

flz+ QA —ph) - f(=z)
= < flo+h)— flx)

We can then take the limit ag v — 1,
1 pf @+ L =Dh) — f(@)

S fle+h) - flo)
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hf'(z) < flz+h) — flz) (31)
flz+h) > f(2) + hf'(z)
fy) = fz) + f(z)y — =)
which is the inequality we need. O

Last, )
Proposition. Jf f : U — R, U € R is twice differentiable, then f is convex if f(z) is nonnegative at all
points.

Proof. We showed in part b) that if f is convex, then f (y) = f(z)+ f/{z)(y — z) holds. Let’s assume this
statement also holds for a twice differentiable function f. Then,
f@) =) 2 Fz-y)
~(f@) - f=2) 2 ~(y - =)' @) (32)
f) - f(=) < Fwy — =)
Therefore, we have that
F@)y~2) < fla)— fly) < iy -2) :
f@)y~=) < fly)y -2 (33)
fiz) < f'ly)

Since the first derivative of f is increasing, f”(z) = (1, which means that f is convex.



Problem 13

Proposition. Let f : U — R be n-times differentiable ot the point xo € U, then

fl@o+h) = f(zo) = F'(zo)h — .. — FO V@) oy ) (ao)

lim = = . (34)

h—0 K nl

Proof. Differentiating numerator and denominator,
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( limg 1™ = lim (0 +n) = F(@0) = (@) =+~ £ Do) pr g5y = Floo +0) = flan) = 0) (35)
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Differentiating with respect to h n times,
o +h) "N (zo)
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Problem 14

Proof. Let f : R — R be a function such that f(y) = (a +¥)". We know f*) = for k > n and can apply
Taylor’s theorem,

¢ 1" (n+1)
19 =1+ E26-0+ LBG-ap s Lm@@-art e
with 8 =z and & = 0 (as 0,z € R). Therefore,
fla+z)" =a" +na" 'z + E-(-?}'g;lla““zﬁ +...+ 2" (39)
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