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Chapter 6: 12-17, 19, 21, 22

12 Claim. If f: [a,b] — R is continuous on |[a, b], then fab f(z) de = f'(£)(b—a) for some
€ € la,b].

Proof. fis continuous on (a, b) C [a, b] so there exists a F': (a,b) — R such that F' = f
and fab f(x) de = F(b) — F(a). F is differentiable (and therefore continuous) on (a, b),
so by the Mean Value Theorem, there exists a £ € (a,b) such that,
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13 Claim. If f: [a,b] — R is continuous, and f(x) > 0, then
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i ([ o dx)i — max{(z)  « € [a, 1)

Proof. Let M = max{f(x) : € [a,b]}. Then f(x) < M implies (f(z))” < M™. Be-
cause |(f(x))"| = (f(z))", it follows from the previous inequality that ’ff(f(x))" dx‘ <
M™b — al. Since f(x) >0,
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< M|b— a|#. Now, consider:
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14 Claim. If f is a continuous real-valued function on {x € R : > 0} and lim,_,,, f(z) =
¢, then:
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lim —/ f(t) dt =c.
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Proof. Since lim, o f(x) = ¢, |f(n) — ¢| < € for some N with n > N,

1 [* 1 [ 1 [*
li — tdt = 1i — t) dt + — dt
I;TM/OJ”() xffoo[x/om +/ ]
1 1

~ lim [— (F(n) = F(0))x + —(cx — cn)]

x——+oco | &
~ im [F(n)—F(O)—cn+c] _.
Tr——+00 €T
Thus,
1 €T
lim — [ f(t)dt=c O
r—+00 I 0

15 Claim. Let [a,b] and [c,d] be closed intervals in R, and let f be a continuous real-
valued function on {(z,y) € E? : z € [a,b] ,y € [c,d]}. Show that the function g: [c,d] —

R defined by g(y) = fab f(z,y)dz for all y € [¢,d] is continuous.
Proof. Since {(x,y) € E? : x € [a,b],y € [c,d]} is compact, f is uniformly continuous.

Thus, for any € > 0 there exists a 6 > 0 such that |f(z,y) — f(z,y0)| < € for all
x € [a,b] whenever |y — yo| < § with y,yy € [c, d].

If f is integrable on [a, b] then so is | f|. Furthermore, |fab f(z)dx| < fab |f(x)dx|.

Thus,

b b
90) = )| = | | Flavg)de = fo)ds| < [ 1@ g)de ~ f(o.on)da] < b~
whenever |y — yo| < §. Hence, the restriction of g to [, d] is continuous. O

16 Claim. The real-valued function F on C'[a, b] which sends any function f into fab f(z)dz
is uniformly continuous.



Proof. For all € > 0, there exists a positive § = ﬁ such that if f,¢g € Cla,b] and
d(f,g) <9, then
(). F@) = 1F) - Fo)l =| [ 5w ae— [ o)

< maX{lf( ) = |}|b—a| =d(f,g)lb—a| < 5|b—a| =
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Since d(F(f), F(g)) < € for any f, g € Cla,b], F' is uniformly continuous. O

17 Claim. If v and v are real-valued functions on an open subset of R containing the
interval [a, b] and if u and v have continuous derivatives, then

b b
/ w(x)v' (z)dx = u(b)v(b) — u(a)v(a) — / v(z)u' (z) dr.

Proof. By the product rule, Lu (z)v (z) = u(z)v'(z) + «/(z)v(z). Integrate over [a, b],

w(B)o(b) — ula)v(a) = / b (%mmmm) dz

:/ () (z) + v/ (x)v(x)] da
— [ @lde+ [ )] dr

Rearranging gives

b b
/ w(x)v' (z)dx = u(b)v(b) — u(a)v(a) — / v(z)u'(z) d O

19 Claim. If f is a function on the open interval U C R to R with a continuous (n + 1)
derivative on U, then for any a,b € U, we have:

fla)(b—a) f"(a)(b—a
=) , [

+ f ( b - CL / f n+1) ) dr
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Proof. For any a,b € U, define R,(b,a) € R by

(a " 2 M (a)(b— a)®
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f(0) = f(a) +

+ R,(b,a)
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It will suffice to show that R, (b, a) = % fab fO+)(2)(b—z)" dz. By the lemma in §5.4,
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Integrating gives:
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Ra(b.8) = Rulbia) = = [ 100 (@)~ 0" da

However, R, (b,b) = f(b) — f(b) = 0 from the definition, so
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21 (a) First, rewrite the expression in a more familiar form:
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This is the limit of the Riemann sum corresponding to f(z) = 2%, k € R,k > 0
and partition P = (0,%, 2, ... 1). Therefore,

'nin?t "

n N\ k 1 k 1
7 1 T 1
li ~) = = kde = —
i S (5) w= e = ] -

(b) Again, rewrite in a clearer form,
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Like above, this is the limit of a Riemann sum over the partition P = (0,
In this case, f(z) = 1= Thus,
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22 Claim. Forn =1,2,3,..., the number
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is positive, decreases, and hence the sequence of these numbers converge to a limit
between 0 and 1.

Proof. First, consider the left hand Riemann sum of % over [1,n]. Because i is mono-
tonically decreasing for x > 0, the left hand Riemann sum will overestimate fln% dx.
In particular, if the partition has width 1, then,

fle)(x; —xiq) = —,>/ — dx =logn
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We would like to show that:

n+1 n

Z% —log(n+1) < Z% — log(n).

i=1 =1

log ((1 + %)nH) is strictly decreasing since lim,, o (1 + %)n =e < lim,_ (1 + %)nﬂ.

1 = log(e) < log <<1 + %)nH)
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< log(n+ 1) — log(n)
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-1 1) < -1
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Thus, as desired:
n+1 n

1 1
-—1 1) < --1 .
>~ logln+1) < 3 5~ log(n)
Since the sequence is decreasing with initial value 1 —log 1 = 1 and lower bound 0, we
know that f(n) — g(n) converges to some number in [0, 1], Euler’s constant. O



