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12 Claim. If f : [a, b]→ R is continuous on [a, b], then
∫ b
a
f(x) dx = f ′(ξ)(b−a) for some

ξ ∈ [a, b].

Proof. f is continuous on (a, b) ⊂ [a, b] so there exists a F : (a, b)→ R such that F ′ = f

and
∫ b
a
f(x) dx = F (b)−F (a). F is differentiable (and therefore continuous) on (a, b),

so by the Mean Value Theorem, there exists a ξ ∈ (a, b) such that,

F ′(ξ) =
F (b)− F (a)

b− a

f(ξ) =

∫ b
a
f(x) dx

b− a∫ b

a

f(x) dx = f(ξ)(b− a)

13 Claim. If f : [a, b]→ R is continuous, and f(x) ≥ 0, then

lim
n→∞

(∫ b

a

(f(x))n dx

) 1
n

= max{f(x) : x ∈ [a, b]}

.

Proof. Let M = max{f(x) : x ∈ [a, b]}. Then f(x) ≤ M implies (f(x))n ≤ Mn. Be-

cause |(f(x))n| = (f(x))n, it follows from the previous inequality that
∣∣∣∫ ba (f(x))n dx

∣∣∣ ≤
Mn|b− a|. Since f(x) ≥ 0,∫ b

a

(f(x))n dx =

∣∣∣∣∫ b

a

(f(x))n dx

∣∣∣∣ ≤Mn|b− a|

Therefore,
(∫ b

a
(f(x))n dx

) 1
n ≤M |b− a| 1n . Now, consider:

lim
n→∞

(∫ b

a

(f(x))n dx

) 1
n

≤ lim
n→∞

M |b− a|
1
n

lim
n→∞

(∫ b

a

(f(x))n dx

) 1
n

≤M

1



14 Claim. If f is a continuous real-valued function on {x ∈ R : x ≥ 0} and limx→+∞ f(x) =
c, then:

lim
x→+∞

1

x

∫ x

0

f(t) dt = c.

Proof. Since limx→+∞ f(x) = c, |f(n)− c| < ε for some N with n > N ,

lim
x→+∞

1

x

∫ x

0

f(t)dt = lim
x→+∞

[
1

x

∫ n

0

f(t) dt+
1

x

∫ x

0

c dt

]
= lim

x→+∞

[
1

x
(F (n)− F (0))x+

1

x
(cx− cn)

]
= lim

x→+∞

[
F (n)− F (0)− cn

x
+ c

]
= c

Thus,

lim
x→+∞

1

x

∫ x

0

f(t)dt = c

15 Claim. Let [a, b] and [c, d] be closed intervals in R, and let f be a continuous real-
valued function on {(x, y) ∈ E2 : x ∈ [a, b] , y ∈ [c, d]}. Show that the function g : [c, d]→
R defined by g(y) =

∫ b
a
f(x, y)dx for all y ∈ [c, d] is continuous.

Proof. Since {(x, y) ∈ E2 : x ∈ [a, b] , y ∈ [c, d]} is compact, f is uniformly continuous.
Thus, for any ε > 0 there exists a δ > 0 such that |f(x, y) − f(x, y0)| < ε for all
x ∈ [a, b] whenever |y − y0| < δ with y, y0 ∈ [c, d].

If f is integrable on [a, b] then so is |f |. Furthermore, |
∫ b
a
f(x)dx| ≤

∫ b
a
|f(x)dx|.

Thus,

|g(y)− g(y0)| =
∣∣∣∣∫ b

a

f(x, y)dx− f(x, y0)dx

∣∣∣∣ ≤ ∫ b

a

|f(x, y)dx− f(x, y0)dx| < ε(b− a)

whenever |y − y0| < δ. Hence, the restriction of g to [c, d] is continuous.

16 Claim. The real-valued function F on C [a, b] which sends any function f into
∫ b
a
f(x)dx

is uniformly continuous.
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Proof. For all ε > 0, there exists a positive δ = ε
|b−a| such that if f, g ∈ C[a, b] and

d(f, g) < δ, then

d(F (f), F (g)) = |F (f)− F (g)| =
∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

g(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

f(x)− g(x) dx

∣∣∣∣
≤ max

x∈[a,b]
{|f(x)− g(x)|}|b− a| = d(f, g)|b− a| < δ|b− a| = ε

Since d(F (f), F (g)) < ε for any f, g ∈ C[a, b], F is uniformly continuous.

17 Claim. If u and v are real-valued functions on an open subset of R containing the
interval [a, b] and if u and v have continuous derivatives, then∫ b

a

u(x)v′(x)dx = u(b)v(b)− u(a)v(a)−
∫ b

a

v(x)u′(x) dx.

Proof. By the product rule, d
dx
u (x) v (x) = u(x)v′(x) + u′(x)v(x). Integrate over [a, b],

u(b)v(b)− u(a)v(a) =

∫ b

a

(
d

dx
u(x)v(x)

)
dx

=

∫ b

a

[u(x)v′(x) + u′(x)v(x)] dx

=

∫ b

a

[u(x)v′(x)] dx+

∫ b

a

[u′(x)v(x)] dx

Rearranging gives∫ b

a

u(x)v′(x)dx = u(b)v(b)− u(a)v(a)−
∫ b

a

v(x)u′(x) dx

19 Claim. If f is a function on the open interval U ⊂ R to R with a continuous (n+ 1)
derivative on U , then for any a, b ∈ U , we have:

f(b) = f(a) +
f ′(a)(b− a)

1!
+
f ′′(a)(b− a)2

2!
+ · · ·

+
f (n)(a)(b− a)n

n!
+

1

n!

∫ b

a

f (n+1)(x)(b− x)n dx

Proof. For any a, b ∈ U , define Rn(b, a) ∈ R by

f(b) = f(a) +
f ′(a)(b− a)

1!
+
f ′′(a)(b− a)2

2!
+ · · ·+ f (n)(a)(b− a)n

n!
+Rn(b, a)
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It will suffice to show that Rn(b, a) = 1
n!

∫ b
a
f (n+1)(x)(b−x)n dx. By the lemma in §5.4,

d

dx
Rn(b, x) = −f

(n+1)(x)(b− x)n

n!

Integrating gives: ∫ b

a

d

dx
Rn(b, x) dx = − 1

n!

∫ b

a

f (n+1)(x)(b− x)n dx

Rn(b, b)−Rn(b, a) = − 1

n!

∫ b

a

f (n+1)(x)(b− x)n dx

However, Rn(b, b) = f(b)− f(b) = 0 from the definition, so

Rn(b, a) =
1

n!

∫ b

a

f (n+1)(x)(b− x)n dx

21 (a) First, rewrite the expression in a more familiar form:

lim
n→∞

1k + 2k + · · ·+ nk

nxk + 1
= lim

n→∞

((
1

n

)k
+

(
2

n

)k
+ · · ·+

(n
n

)k) 1

n

= lim
n→∞

n∑
i=1

(
i

n

)k
1

n

This is the limit of the Riemann sum corresponding to f(x) = xk, k ∈ R, k > 0
and partition P = (0, 1

n
, 2
n
, . . . , 1). Therefore,

lim
n→∞

n∑
i=1

(
i

n

)k
1

n
=

∫ 1

0

xk dx =

[
xk

k + 1

]1
0

=
1

k + 1

(b) Again, rewrite in a clearer form,

lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
= lim

n→∞

n∑
i=1

1

n+ i

= lim
n→∞

n∑
i=1

1

1 + i/n
= lim

n→∞

n∑
i=1

1

1 + i/n

1

n

Like above, this is the limit of a Riemann sum over the partition P = (0, 1
n
, 2
n
, . . . , 1).

In this case, f(x) = 1
1+x

. Thus,

lim
n→∞

n∑
i=1

1

1 + i/n

1

n
=

∫ 1

0

1

1 + x
dx = [ln(1 + x)]10 = ln 2
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22 Claim. For n = 1, 2, 3, . . ., the number

1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n

is positive, decreases, and hence the sequence of these numbers converge to a limit
between 0 and 1.

Proof. First, consider the left hand Riemann sum of 1
x

over [1, n]. Because 1
x

is mono-
tonically decreasing for x > 0, the left hand Riemann sum will overestimate

∫ n
1

1
x
dx.

In particular, if the partition has width 1, then,
n∑
i=1

f(xi)(xi − xi−1) =
n∑
i=1

1

i
>

∫ n

1

1

x
dx = log n

n∑
i=1

1

i
> log n

n∑
i=1

1

i
− log n > 0

We would like to show that:
n+1∑
i=1

1

i
− log(n+ 1) <

n∑
i=1

1

i
− log(n).

log
((

1 + 1
n

)n+1
)

is strictly decreasing since limn→∞
(
1 + 1

n

)n
= e < limn→∞

(
1 + 1

n

)n+1
.

1 = log(e) < log

((
1 +

1

n

)n+1
)

n+ 1

n+ 1
< (n+ 1) log

(
n+ 1

n

)
1

n+ 1
< log

(
n+ 1

n

)
1

n+ 1
< log(n+ 1)− log(n)

1

n+ 1
− log(n+ 1) < − log(n)

Thus, as desired:
n+1∑
i=1

1

i
− log(n+ 1) <

n∑
i=1

1

i
− log(n).

Since the sequence is decreasing with initial value 1− log 1 = 1 and lower bound 0, we
know that f(n)− g(n) converges to some number in [0, 1], Euler’s constant.
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