Practice Test 2 for Anaysis I, Math 4317.

1: Problem 32 on page 94 of IA.

2 : Problem 34 on page 94 of IA.

3: Let $C \subset E^n$ be a closed set. Let $x_0 \in E^n$ be a point. Recall that the distance from x_0 to C is given by

$$d(x_0, C) := g.l.b\{|x_0 - y| : y \in C\}$$

Show that there exists $y \in C$ such that

$$d(x_0, C) = |x_0 - y|$$
.

Is this point unique? Give examples.

4 : Let C and D be two closed subsets of E^n and define the distance between these sets by

$$d(C, D) = g.l.b.\{|x - y| : x \in C, y \in D\}$$

If one of these sets is compact, then there exists $x_0 \in C$ and $y_0 \in D$ such that

$$|x_0 - y_0| = d(C, D)$$
.

Is the compactness condition really needed?

5 : Recall that for a set $S \in E$ where E is a metric space, the interior of S is defined by

$$S^{\circ} := \cup_{U \subset S, open} U$$

and the closure of S by

$$\overline{S} := \cap_{F \supset S, closed} F$$

Finally consider the boundary of S

$$\partial S = \overline{S} \cap \overline{S^c} \; .$$

Prove or disprove:

a) We have always

$$\overline{S^{\circ}} = \overline{S}$$

b) There exists a metric space and a set $S \subset E$ such that the boundary of the set S is S. c) We have always

$$\overline{S}^{\circ} \neq \emptyset$$

d)

$$E = S^{\circ} \cup \partial S \cup (S^c)^{\circ}$$

where all the sets on the right are disjoint.

6: Let p_1, p_2, \ldots be a convergent sequence in a metric space *E* with limit *p*. Show, by applying the definition that the set $\{p, p_1, p_2, \ldots\}$ is compact.

7: Is the function $x^{1/3}$, defined for all real numbers, uniformly continuous?

8: Find the integer part of the root of $x^3 - x + 1$.

9: Problem 10 on page 92 of IA