A good source for this material is the book by Reed and Simon, Methods of Modern Math-

ematical Physics, Vol. T on Functional Analysis, which we follow.

1 The Diagonal Argument

1.1 DEFINITION (Subsequence). A subsequence of a given sequence is a function m :

N — N which is strictly increasing.

1.2 THEOREM. Consider a sequence of functions { f,(x)}3 defined on the positive integers
that take values in the reals. Assume that this sequence is uniformly bounded, i.e., there is a

positive constant such that

()] < C

foralln = 1,2,... and all x € N. Then there exists a subsequence m(j) such that fu

converges for all x € N.

Proof. Since f,(1) is a bounded sequence, there exists a subsequence f,, ;) of functions such
that f,,(j)(1) converges as j — oco. Now we pick a subsequence of n;(j) which we call ny(j)
such that the sequence of functions f,,;)(z) converges for x = 2. Proceeding in an inductive
fashion we obtain a subsequence n(j) of the sequence ng_1(j) such that the for the sequence
of functions f,;)(%), fn.(j)(k) is convergent. Note, that this construction guarantees that

Jnn) (1) converges for all r < k. Now we set
m(j) = n;(j) ,

i.e., we pick the ‘diagonal sequence’. Note that f,)(k) converges for every k, since the

sequence
fm(k)(k) ) fm(k—l—l)(k) ) fm(k+2)(k) ) fm(k+3)<k) cee

is a subsequence of the sequence f,, (;)(k), which converges. Hence f,,;)(k) converges for
all £ = 1,2,3,.... For every k, there are finitely many terms that are not part of the

subsequence f,, (;)(k), namely

but they are immaterial for the convergence of the sequence. O]



2 The ¢/3 argument

2.1 THEOREM. The space C([0,1]) consisting of continuous functions f : [0,1] — R with

metric

D(f,9) = max [f(x) — g(z)|

0<z<1

1s a complete metric space.

Proof. We have learned before that C'([0.1]) is a metric space. We have to worry about
completeness. Let f,(z) € C([0,1]) be a Cauchy Sequence. Thus, for every £ > 0 there
exists N such that for all n,m > N

max |f,(x) — fm(2)] <e/2.

0<z<1

In particular, for every fixed « € [0, 1], f,(z) is a Cauchy Sequence of real numbers and since

the reals are complete, this sequence has a limit which we denote by f(z). Since for any m
[f(@) = fm(@)| = T | fu(2) = fou(2)] < Lub{[fo(2) = fm(2)] 0> N},

we have that for all m > N
|f(z) = fm(2)| < /2 < €. (2.1)

Note that z is arbitrary and that ¢ is independent of x, i.e., the convergence is uniform.
Although we know from previous arguments that the limit must be continuous, let us prove
this, because this uses a typical €/3 argument. € > 0 . We have seen that there exists N so
that for all n > N and all z € [0, 1],

[f(x) = fulz)] < /3

Fix such a value for n and fix x. Since f, is continuous, for any ¢ > 0 there exists § > 0

such that for all y € [0, 1] with |z — y| < § we have that

[fn(@) = fuly)] < /3.

Since we also have that
|fulz) = fuly)l <€/3,

we may use the triangle inequality

[f (@) = f(W)] < 1f(@) = fal@)[ + [fu(@) = fa®)] + | fu(z) = fuly)l <e/3+¢/3+2/3=¢



Thus, for any € > 0 there exists § > 0 such that whenever y is such that |z — y| < 0, then
|f(z) — f(y)| < e. Thus, the limit f is continuous. Note, that from (2.1) we know that for
any € > 0 there exists N such that for all n > N

[f(x) = ful2)] < /2

and hence
D(f, fa) = max [f(z) = fu(2)| < e/2 <e,
and hence the sequence f, converges to f in the metric D(f, g). O

3 Equicontinuity and the Theorem of Arzela-Ascoli

We have seen various notions of continuity but they all were statements about a single
function. In this section we shall talk about the continuity properties of a family of functions.
In what follows we shall always consider two metric spaces F/, E' and F a family of continuous

functions from F to E'.

3.1 DEFINITION. A family F of functions from F to E’ is equicontinuous if for every
e > 0 and for every p € E there exists 0 > 0 such that for all f € F

d(f(p). fq) <e

whenever d(p, q) < 6.

Note that the point here is that ¢ depends only on p and £ but not on the function
under consideration. Here is a simple result that gives you a bit of a feeling what this notion

accomplishes.

3.2 THEOREM. Let f,, n=1,2,3 ...be a sequence of functions from E to E' with the
property that f,(p) converges to f(p) for every p € E. Suppose further that the family
{fn}22, is equicontinuous. Then f is continuous, and moreover, the family {f, f1, fa,...} is

also equicontinuous.

Proof. Fix any ¢ and fix any p € E. Then there exists § > 0 such that whenever d(p,q) <
0, d(fu(p), fn(q)) < €/3 for all n = 1,2,3,.... Further there exists N such that both,
d(f(p), fu(p)) <e/3 and d'(f(q), fu(q)) < /3 for all n > N. Fix such a value for n. Then
for all ¢ with d(p,q) < § we have that

d'(f(p) f(@) < d(f(p): fu(p)) + d'(fulp). ful@)) + d'(fula), f(@)) <e/3+€/3+c/3=¢.



Note that since we know that whenever d(p, q) < 0, then d'(f,.(p), fn(q)) < €/3 < € we know
that the family {f, f1, f2, ...} is also an equicontinuous family. ]

Another simple consequence is the following

3.3 THEOREM. Let {f,}>°, be an equicontinuous family of functions from E to E'.
Assume that E' is complete and that f,(p) converges for all p € D where D C E is dense.
Then f,(p) converges for all p € E.

Proof. Recall that D C E dense means that for every p € E and every € > 0 there exists
q € D such that d(p, q) < e. Now pick p € E arbitrary and pick an € > 0. There exists § > 0
such that for all ¢ € E with d(p,q) < § we have for all n = 1,2,3,... d'(fn(p), fu(q)) < /3.
In particular there exists ¢ € D with d(p,q) < d. Since f,(q) converges for ¢ € D there
exists N so that for all n,m > N, d'(f.(q), fm(q)) < £/3 and hence

d'(fu(p), fm(P)) < d'(fu(p), fu(@)+d (fulq), f(@) +d'(fi(q), fm(p)) < /34+¢/3+e/3=¢.

Thus, f.(p) is a Cauchy sequence in E’' and since E’ is complete it converges. Thus f,(p)
converges for all p € E. O

If in the definition of equicontinuity, d does only depend on € and not on the point p € E,

then we call the family F uniformly equicontinuous. More precisely we have

3.4 DEFINITION. A family F of functions from F to E’ is uniformly equicontinuous
if for every € > 0 there exists § > 0 such that for all f € F and all p,q with d(p,q) < ¢ it
follows that

d(f(p), f(q)) <e.

Here is a first interesting theorem concerning uniform equicontinuity.

3.5 THEOREM. Let{f,}>2, be a uniformly equicontinuous family of real valued functions
on the interval [0,1]. Assume further that f,(z) converges to f(x) for all x € [0,1]. Then

the convergence is uniform.

Proof. Pick € > 0. By Theorem 3.2 we kow that the limiting function is continuous and that
the family {f, f1, f2, ... } is equicontinuous. There exists § > 0 such that |f(z) — f(y)| < /3
and | f,,(z) — fn(y)| < €/3 for all n, whenever |z —y| < 0. Now consider the points z1, ...,z

so that no point = € [0, 1] is farther away from x; for some j = 1,2,..., M. This is a finite



set of points and hence there exists N, depending only on ¢ such that for all n > N and all
17=1,..., M,
() = falz;)] <&/3 .

For any = € [0, 1] we have therefore for some z; with |z — z;| < ¢ that

[f (@) = fal)] < |f (@) = )|+ 1F(25) = Fulep)] + | fulzs) = ful2)]
and since each term is strictly less than /3 the result follows. [

We are now ready to formulate and prove a central result.

3.6 THEOREM (Arzela-Ascoli Theorem). Let {f,,}°°, be a uniformly equicontinuous fam-
ily of uniformly bounded functions on [0,1]. Then there exists a subsequence f,;y which

converges uniformly on [0, 1].

Proof. The rational numbers in r,, € [0,1] are countable and dense. Since the functionsf,
are uniformly bounded we also know that |f,(rm,)| < C for some constant C' > 0. From
the ‘Diagonal argument’ we know that there exists a subsequence n(i) such that f,,q(7y,)
converges for all r,,. By Theorem 3.3 we know that the sequence f,)(x),i = 1,2,3...
converges for all z € [0,1] to some function f(x). By Theorem 3.2 we know that this

function is continuous and by Theorem 3.5 we know that the convergence is uniform. [



