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A good source for this material is the book by Reed and Simon, Methods of Modern Math-

ematical Physics, Vol. I on Functional Analysis, which we follow.

1 The Diagonal Argument

1.1 DEFINITION (Subsequence). A subsequence of a given sequence is a function m :

N→ N which is strictly increasing.

1.2 THEOREM. Consider a sequence of functions {fn(x)}∞N defined on the positive integers

that take values in the reals. Assume that this sequence is uniformly bounded, i.e., there is a

positive constant such that

|fn(x)| ≤ C

for all n = 1, 2, . . . and all x ∈ N. Then there exists a subsequence m(j) such that fm(j)

converges for all x ∈ N.

Proof. Since fn(1) is a bounded sequence, there exists a subsequence fn1(j) of functions such

that fn1(j)(1) converges as j →∞. Now we pick a subsequence of n1(j) which we call n2(j)

such that the sequence of functions fn2(j)(x) converges for x = 2. Proceeding in an inductive

fashion we obtain a subsequence nk(j) of the sequence nk−1(j) such that the for the sequence

of functions fnk(j)(x), fnk(j)(k) is convergent. Note, that this construction guarantees that

fnk(j)(r) converges for all r ≤ k. Now we set

m(j) = nj(j) ,

i.e., we pick the ‘diagonal sequence’. Note that fm(j)(k) converges for every k, since the

sequence

fm(k)(k) , fm(k+1)(k) , fm(k+2)(k) , fm(k+3)(k) . . .

is a subsequence of the sequence fnk(j)(k), which converges. Hence fm(j)(k) converges for

all k = 1, 2, 3, . . . . For every k, there are finitely many terms that are not part of the

subsequence fnk(j)(k), namely

fm(1)(k) , fm(2)(k) , fm(3)(k) . . . fm(k−1)(k) ,

but they are immaterial for the convergence of the sequence.
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2 The ε/3 argument

2.1 THEOREM. The space C([0, 1]) consisting of continuous functions f : [0, 1]→ R with

metric

D(f, g) = max
0≤x≤1

|f(x)− g(x)|

is a complete metric space.

Proof. We have learned before that C([0.1]) is a metric space. We have to worry about

completeness. Let fn(x) ∈ C([0, 1]) be a Cauchy Sequence. Thus, for every ε > 0 there

exists N such that for all n,m > N

max
0≤x≤1

|fn(x)− fm(x)| < ε/2 .

In particular, for every fixed x ∈ [0, 1], fn(x) is a Cauchy Sequence of real numbers and since

the reals are complete, this sequence has a limit which we denote by f(x). Since for any m

|f(x)− fm(x)| = lim
n→∞

|fn(x)− fm(x)| ≤ l.u.b{|fn(x)− fm(x)| : n > N} ,

we have that for all m > N

|f(x)− fm(x)| ≤ ε/2 < ε . (2.1)

Note that x is arbitrary and that ε is independent of x, i.e., the convergence is uniform.

Although we know from previous arguments that the limit must be continuous, let us prove

this, because this uses a typical ε/3 argument. ε > 0 . We have seen that there exists N so

that for all n > N and all x ∈ [0, 1],

|f(x)− fn(x)| < ε/3

Fix such a value for n and fix x. Since fn is continuous, for any ε > 0 there exists δ > 0

such that for all y ∈ [0, 1] with |x− y| < δ we have that

|fn(x)− fn(y)| < ε/3 .

Since we also have that

|fn(x)− fn(y)| < ε/3 ,

we may use the triangle inequality

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(x)− fn(y)| < ε/3 + ε/3 + ε/3 = ε
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Thus, for any ε > 0 there exists δ > 0 such that whenever y is such that |x − y| < δ, then

|f(x) − f(y)| < ε. Thus, the limit f is continuous. Note, that from (2.1) we know that for

any ε > 0 there exists N such that for all n > N

|f(x)− fn(x)| ≤ ε/2

and hence

D(f, fn) = max
0≤x≤1

|f(x)− fn(x)| ≤ ε/2 < ε ,

and hence the sequence fn converges to f in the metric D(f, g).

3 Equicontinuity and the Theorem of Arzela-Ascoli

We have seen various notions of continuity but they all were statements about a single

function. In this section we shall talk about the continuity properties of a family of functions.

In what follows we shall always consider two metric spaces E,E ′ and F a family of continuous

functions from E to E ′.

3.1 DEFINITION. A family F of functions from E to E ′ is equicontinuous if for every

ε > 0 and for every p ∈ E there exists δ > 0 such that for all f ∈ F

d′(f(p), f(q)) < ε

whenever d(p, q) < δ.

Note that the point here is that δ depends only on p and ε but not on the function

under consideration. Here is a simple result that gives you a bit of a feeling what this notion

accomplishes.

3.2 THEOREM. Let fn, n=1,2,3 . . . be a sequence of functions from E to E ′ with the

property that fn(p) converges to f(p) for every p ∈ E. Suppose further that the family

{fn}∞n=1 is equicontinuous. Then f is continuous, and moreover, the family {f, f1, f2, . . . } is

also equicontinuous.

Proof. Fix any ε and fix any p ∈ E. Then there exists δ > 0 such that whenever d(p, q) <

δ, d′(fn(p), fn(q)) < ε/3 for all n = 1, 2, 3, . . . . Further there exists N such that both,

d′(f(p), fn(p)) < ε/3 and d′(f(q), fn(q)) < ε/3 for all n > N . Fix such a value for n. Then

for all q with d(p, q) < δ we have that

d′(f(p), f(q)) ≤ d′(f(p), fn(p)) + d′(fn(p), fn(q)) + d′(fn(q), f(q)) < ε/3 + ε/3 + ε/3 = ε .
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Note that since we know that whenever d(p, q) < δ, then d′(fn(p), fn(q)) < ε/3 < ε we know

that the family {f, f1, f2, . . . } is also an equicontinuous family.

Another simple consequence is the following

3.3 THEOREM. Let {fn}∞n=1 be an equicontinuous family of functions from E to E ′.

Assume that E ′ is complete and that fn(p) converges for all p ∈ D where D ⊂ E is dense.

Then fn(p) converges for all p ∈ E.

Proof. Recall that D ⊂ E dense means that for every p ∈ E and every ε > 0 there exists

q ∈ D such that d(p, q) < ε. Now pick p ∈ E arbitrary and pick an ε > 0. There exists δ > 0

such that for all q ∈ E with d(p, q) < δ we have for all n = 1, 2, 3, . . . d′(fn(p), fn(q)) < ε/3.

In particular there exists q ∈ D with d(p, q) < δ. Since fn(q) converges for q ∈ D there

exists N so that for all n,m > N , d′(fn(q), fm(q)) < ε/3 and hence

d′(fn(p), fm(p)) ≤ d′(fn(p), fn(q))+d′(fn(q), fm(q))+d′(fm(q), fm(p)) < ε/3+ε/3+ε/3 = ε .

Thus, fn(p) is a Cauchy sequence in E ′ and since E ′ is complete it converges. Thus fn(p)

converges for all p ∈ E.

If in the definition of equicontinuity, δ does only depend on ε and not on the point p ∈ E,

then we call the family F uniformly equicontinuous. More precisely we have

3.4 DEFINITION. A family F of functions from E to E ′ is uniformly equicontinuous

if for every ε > 0 there exists δ > 0 such that for all f ∈ F and all p, q with d(p, q) < δ it

follows that

d′(f(p), f(q)) < ε .

Here is a first interesting theorem concerning uniform equicontinuity.

3.5 THEOREM. Let {fn}∞n=1 be a uniformly equicontinuous family of real valued functions

on the interval [0, 1]. Assume further that fn(x) converges to f(x) for all x ∈ [0, 1]. Then

the convergence is uniform.

Proof. Pick ε > 0. By Theorem 3.2 we kow that the limiting function is continuous and that

the family {f, f1, f2, . . . } is equicontinuous. There exists δ > 0 such that |f(x)−f(y)| < ε/3

and |fn(x)−fn(y)| < ε/3 for all n, whenever |x−y| < δ. Now consider the points x1, . . . , xM

so that no point x ∈ [0, 1] is farther away from xj for some j = 1, 2, . . . ,M . This is a finite
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set of points and hence there exists N , depending only on ε such that for all n > N and all

j = 1, . . . ,M ,

|f(xj)− fn(xj)| < ε/3 .

For any x ∈ [0, 1] we have therefore for some xj with |x− xj| < δ that

|f(x)− fn(x)| ≤ |f(x)− f(xj)|+ |f(xj)− fn(xj)|+ |fn(xj)− fn(x)|

and since each term is strictly less than ε/3 the result follows.

We are now ready to formulate and prove a central result.

3.6 THEOREM (Arzela-Ascoli Theorem). Let {fn}∞n=1 be a uniformly equicontinuous fam-

ily of uniformly bounded functions on [0, 1]. Then there exists a subsequence fn(i) which

converges uniformly on [0, 1].

Proof. The rational numbers in rm ∈ [0, 1] are countable and dense. Since the functionsfn

are uniformly bounded we also know that |fn(rm)| ≤ C for some constant C > 0. From

the ‘Diagonal argument’ we know that there exists a subsequence n(i) such that fn(i)(rm)

converges for all rm. By Theorem 3.3 we know that the sequence fn(i)(x), i = 1, 2, 3 . . .

converges for all x ∈ [0, 1] to some function f(x). By Theorem 3.2 we know that this

function is continuous and by Theorem 3.5 we know that the convergence is uniform.


