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1 Integration of functions

In the following we consider the closed interval [a, b] ⊂ R and f a real valued, bounded

function defined on [a, b]. Our goal is to give a definition of the Riemann integral and derive

the fundamental theorem of calculus. I follow the great problem book of Polyá and Szgö

“Aufgaben und Lehrsätze aus der Analysis I”. I am sure that this book has been translated

into English.

1.1 Partitions, upper sums and lower sums

Apartition P of the interval [a, b] is a collection of distinct points in

a = x0 < x1 < · · ·xn−1 < xn = b .

Given two partitions P and Q we define the refinement of P and Q to be

P ∪Q .

The upper sum

Uf (P) =
n∑

j=1

sup
xj−1≤x≤xj

f(x)(xj − xj−1)

and the lower sum

Lf (P) =
n∑

j=1

inf
xj−1≤x≤xj

f(x)(xj − xj−1) .

Recall that

sup
xj−1≤x≤xj

f(x) = l.u.b.{f(x) : xj−1 ≤ x ≤ xj}

and likewise

inf
xj−1≤x≤xj

f(x) = g.l.b.{f(x) : xj−1 ≤ x ≤ xj} .

We have, obviously that

Uf (P) ≥ Lf (P)

and both sums are finite since the function is bounded.

1.1 LEMMA. Let P ⊂ Q, i.e., Q is a refinement of P. Then

Uf (Q) ≤ Uf (P)

and

Lf (Q) ≥ Lf (P) .
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Proof. Take two successive points xj > xj−1 for which there exists one or more points

xj−1 6= y1, . . . , yk 6= xj with

xj−1 < y1 < y2 · · · < yk < xj

Such a situation must exist since Q is a refinement of P . Otherwise P = Q and there is

nothing to prove.

Now,

sup
xj−1≤x≤xj

f(x) ≥ max{ sup
xj−1≤x≤y1

f(x), sup
y1≤x≤y2

f(x), . . . , sup
yk≤x≤xj

f(x)}

and hence

sup
xj−1≤x≤xj

f(x)(xj − xj−1)

≥ sup
xj−1≤x≤y1

f(x)(y1 − xj−1) + sup
y1≤x≤y2

f(x)(y2 − y1) + · · ·+ sup
yk≤x≤xj

f(x)(xj − yk) .

This inequality proves that the first inequality of the lemma. The other follows in a similar

fashion.

1.2 COROLLARY. Let P and Q be any two partitions. Then

Uf (P) ≥ Lf (Q) .

In particular

Uf = inf{Uf (P) : P is a partition}

and

Lf = sup{Lf (P) : P is a partition} ,

and

Uf ≥ Lf .

We call the numbers Uf , Lf the upper respectively, lower limit.

Proof. Take the union P ∪ Q which is a refinement of both, P and Q. By Lemma 1.1 we

have that

Uf (P) ≥ Uf (P ∪Q) ≥ Lf (P ∪Q) ≥ Lf (Q) .

The set {Lf (P) : P is a partition} is bounded above and the set {Uf (P) : P is a partition}
is bounded below and therefore Uf and Lf are defined and Uf ≥ Lf .
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1.3 DEFINITION. A function f : [a, b]→ R is integrable in the sense of Riemann, if it

is bounded and if the upper limit equals the lower limit, i.e.,

Uf = Lf ,

and we denote this number by ∫ b

a

f(x)dx .

1.4 Remark. Thus, in order to decide whether a function is integrable we have to find a

sequence of partitions Pn such that Uf (Pn)−Lf (Pn) converges towards zero. This is, because

Uf (Pn)− Lf (Pn) ≥ Uf − Lf ≥ 0 .

There is of course great flexibility in finding such partitions.

1.2 Continuous functions and monotone functions are integrable

1.5 THEOREM. Any bounded monotone function on the interval [a, b] is integrable.

Proof. We may assume that the function is monotone increasing. The proof for monotone

decreasing functions follows by considering −f . All we have to do is to exhibit a sequence

of partitions Pn so that Uf (Pn)− Lf (Pn) ≥ 0 converges to zero. Pick

Pn = {a+
k

n
(b− a) : k = 1, . . . n} .

Observe that

Uf (Pn)− Lf (Pn) =
n∑

j=1

[
sup

xj−1≤x≤xj

f(x)− inf
xj−1≤x≤xj

f(x)

]
b− a
n

which equals
n∑

j=1

[f(xj)− f(xj−1)]
b− a
n

=
(f(b)− f(a))(b− a)

n

which tends to zero as n→∞.

For the next theorem the notion of width of a partition P which is defined as

max{xj − xj−1 : 1 ≤ j < n}

is useful.
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1.6 THEOREM. Any continuous function on the interval [a, b] is integrable.

Proof. Every continuous functions on a closed interval is uniformly continuous. Pick ε > 0.

There exists δ > such that for all x, y ∈ [a, b] with |x− y| < δ we have that

|f(x)− f(y)| < ε

b− a

Pick any partition P of width less than δ, e.g., the one before with

b− a
n

< δ .

Then

0 ≤ Uf (P)− Lf (P) =
n∑

j=1

[
sup

xj−1≤x≤xj

f(x)− inf
xj−1≤x≤xj

f(x)

]
(xj − xj−1) .

Further, since f is uniformly continuous on [a, b] it is bounded and

sup
xj−1≤x≤xj

f(x) = f(x′)

for some xj−1 ≤ x′ ≤ xj. Likewise

inf
xj−1≤x≤xj

f(x) = f(y′)

for some xj−1 ≤ y′ ≤ xj. Since the width of the partition is less than δ we also have that

|x′ − y′| < δ and hence

0 ≤

[
sup

xj−1≤x≤xj

f(x)− inf
xj−1≤x≤xj

]
f(x) = f(x′)− f(y′) <

ε

b− a
.

Thus

0 ≤ Uf (P)− Lf (P) <
n∑

j=1

(xj − xj−1)
ε

b− a
= ε

Since ε is arbitrary, we have that Uf = Lf .

1.3 Some examples

Example 1: Consider the function f(x) on [0, 1] defined by

f(x) =

1 if x is rational

0 if x is irrational
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Pick any partition P . Then

Uf (P) =
n∑

j=1

sup
xj−1≤x≤xj

f(x)(xj − xj−1) =
n∑

j=1

(xj − xj−1) = 1

since every interval [xj−1, xj] contains rational numbers. Likewise

Lf (P) = 0

since every interval [xj−1, xj] contains irrational numbers. Thus the upper limit Uf = 1 and

the lower limit Lf = 0. This function is not integrable.

Example 2: Consider the functions 1
x2 on the interval [a, b] with a > 0. Let P is any

partition note that on the interval [xj−1, xj] we have sup 1
x2 = 1

x2
j−1

and inf 1
x2 = 1

x2
j
. Now

1

xj−1

− 1

xj

=
xj − xj−1

xjxj−1

and
1

x2
j

(xj − xj−1) ≤
xj − xj−1

xjxj−1

≤ 1

x2
j−1

(xj − xj−1)

we find that

Lf (P) ≤
n∑

j=1

(
1

xj−1

− 1

xj

)
≤ Uf (P) .

But
n∑

j=1

(
1

xj−1

− 1

xj

)
=

1

a
− 1

b

independent of the partition. Since 1
x2 is integrable on [a, b] we find that∫ b

a

1

x2
dx =

1

a
− 1

b
.

Example 3: The function xn, n ∈ N, being continuous, is integrable on the interval

[a, b]. We assume that a > 0. Once more choosing a partition we concentrate on the interval

[xj−1, xj] and note that

(xn+1
j − xn+1

j−1 ) = (xj − xj−1)
n∑

k=0

xk
jx

n−k
j−1 .

Since xj > xj−1 we have that

(n+ 1)xn+1
j−1 <

n∑
k=0

xk
jx

n−k
j−1 < (n+ 1)xn+1

j .
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Hence, as before

Lf (P) ≤
∑n

j=1(x
n+1
j − xn+1

j−1 )

n+ 1
≤ Uf (P)

and once more we have a telescoping sum and obtain that for all partitions P

Lf (P) ≤ bn+1 − an+1

n+ 1
≤ Uf (P) .

Hence ∫ b

a

xndx =
bn+1 − an+1

n+ 1
.

An interesting example is given by the function f(x) = 1
x

on [a, b], where a > 0. Once

more, this function is integrable and we try to compute the integral. Choose the sequence

of partitions

Pn = {a
(
b

a

) k
n

: k = 0, 1, . . . , n}

Now, compute

Uf (Pn) =
n∑

j=1

1

a
(

b
a

) j−1
n

(a

(
b

a

) j
n

− a
(
b

a

) j−1
n

) = n(

(
b

a

) 1
n

− 1)

and

L(Pn) =
n∑

j=1

1

a
(

b
a

) j
n

(a

(
b

a

) j
n

− a
(
b

a

) j−1
n

) = n(1−
(a
b

) 1
n
)

Recall that

Uf (Pn) ≥ Uf ≥ Lf ≥ Lf (Pn) .

Although we did not talk yet about the logarithm, it is easy to see that

lim
n→∞

n(

(
b

a

) 1
n

− 1) = lim
n→∞

= n(1−
(a
b

) 1
n
) = log(

b

a
) .

Hence ∫ b

a

1

x
dx = log(

b

a
) .

1.4 Linearity of the integral and Inequalities for integrals

1.7 THEOREM. Let f and g be two integrable functions on the interval [a, b]. The f + g

is also integrable and ∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx .
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Likewise, if c ∈ R is any constant the cf(x) is integrable and∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx .

Proof. Pick any ε and choose partitions P and Q such that∫ b

a

f(x)dx− ε/2 < Lf (P) ≤ Uf (P) <

∫ b

a

f(x)dx+ ε/2

and ∫ b

a

g(x)dx− ε/2 < Lg(Q) ≤ Ug(Q) <

∫ b

a

g(x)dx+ ε/2

Taking the refinement of the two partitions R = P ∪Q we know that

Lf+g(R) ≥ Lf (R) + Lg(R) ,

which follows from the fact that

inf
S

(f(x) + g(x)) ≥ inf
S
f(x) + inf

S
g(x) .

Since

Lf (R) + Lg(R) ≥ Lf (P) + Lg(Q)

we have that

Lf+g(R) >

∫ b

a

f(x)dx+

∫ b

a

g(x)dx− ε .

Similarly,

Uf+g(R) ≤ Uf (R) + Ug(R)

since

sup
S

(f(x) + g(x)) ≤ sup
S
f(x) + sup

S
g(x) .

Hence we have that

Uf+g(R) ≤ Uf (P) + Ug(Q) <

∫ b

a

f(x)dx+

∫ b

a

g(x)dx+ ε .

Thus∫ b

a

f(x)dx+

∫ b

a

g(x)dx− ε < Lf+g(R) ≤ Uf+g(R) <

∫ b

a

f(x)dx+

∫ b

a

g(x)dx+ ε ,

which proves the additivity of the integral. The proof of the other statement is easy and is

left as an excercise.

Here is a little lemma concerning real functions defined on a set S ⊂ R.
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1.8 LEMMA. Let f be a real valued function on a set S ⊂ R. Then

sup
S
f(x)− inf

S
f(x) ≥ sup

S
|f(x)| − inf

S
|f(x)| .

Proof. We distinguish three cases.

a) f(x) ≥ 0 for all x ∈ S. In this case, we have that f(x) = |f(x)| and the inequality is an

equality.

b) f(x) ≤ 0 for all x ∈ S. In this case

sup
S
f(x) = − inf

S
(−f(x)) = − inf

S
|f(x)| .

Likewise

inf
S
f(x) = − sup

S
(−f(x)) = − sup

S
|f(x)|

and we have that

sup
S
f(x)− inf

S
f(x) = − inf

S
|f(x)|+ sup

S
|f(x)|

and once more there is equality.

The interesting case is

c) f(x) changes sign on S. Clearly

sup f(x) = sup{f(x) : x ∈ S, f(x) > 0}

and

inf f(x) = inf{f(x) : x ∈ S, f(x) < 0} ,

or

inf f(x) = − sup{−f(x) : x ∈ S,−f(x) > 0}

But,

sup{f(x) : x ∈ S, f(x) > 0}+ sup{−f(x) : x ∈ S,−f(x) > 0} = sup
S
|f(x)|

since the sets where f(x) > 0 and the set where f(x) < 0 are disjoint. Hence

sup
S
f(x)− inf

S
f(x) = sup

S
|f(x)| ≥ sup

S
|f(x)| − inf

S
|f(x)| .

and we are done.
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1.9 THEOREM. Let f be an integrable function on [a, b]. Then its absolute value |f | as

well as its positive part defined by f+(x) = max{f(x), 0} and its negative part defined by

f−(x) = max{−f(x), 0} are integrable.

Proof. Consider the upper sum Uf (P) and the lower sum Lf (P) for the function f(x), where

P is a partition. Since

Uf (P)− Lf (P) =
n∑

j=1

[
sup

xj−1≤x<xj

f(x)− inf
xj−1≤x<xj

f(x)

]
(xj − xj−1) .

Bu the above lemma we have

sup
xj−1≤x<xj

f(x)− inf
xj−1≤x<xj

f(x) ≥ sup
xj−1≥x<xj

|f(x)| − inf
xj−1≤x<xj

|f(x)|

and hence

Uf (P)− Lf (P) ≥ U|f |(P)− L|f |(P)

and |f | is integrable if f is integrable. Indeed, f integrable means that for any ε there exists

a partition such that

ε > Uf (P)− Lf (P)

and hence by the above

ε > U|f |(P)− L|f |(P) ≥ 0 .

Since

f+(x) =
f(x) + |f(x)|

2
, f−(x) =

−f(x) + |f(x)|
2

the integrability follows from the one of |f | and the linearity of the integral.

The following is immediate.

1.10 LEMMA. Let f be an integrable function on [a, b]. Hence there exists a constant

M > 0 such that |f(x)| ≤M for all ∈ [a, b]. Then∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤M(b− a) .

1.5 Fundamental Theorem of Calculus

1.11 THEOREM. Let f be a function that is integrable on [a, b] and on [b, c]. The f is

integrable on [a, c] and ∫ c

a

f(x)dx =

∫ b

a

f(x)dx+

∫ c

b

f(x)dx .
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Proof. Pick any ε > 0 and let P be a partition of [a, b] such that∫ b

a

f(x)dx− ε/2 < Lf (P) ≤ Uf (P) <

∫ b

a

f(x)dx+ ε/2

and Q be a partition of [b, c] such that∫ c

b

f(x)dx− ε/2 < Lf (Q) ≤ Uf (Q) <

∫ c

b

f(x)dx+ ε/2

The union R = P∪Q, although not a refinement is a partition of the interval [a, c]. Further,

Lf (R) = Lf (P) + Lf (Q)

and

Uf (R) = Uf (P) + Uf (Q) .

Hence,∫ b

a

f(x)dx+

∫ c

b

f(x)dx− ε < Lf (R) ≤ Uf (R) <

∫ b

a

f(x)dx+

∫ c

b

f(x)dx+ ε .

We adopt the convention that∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

and ∫ a

a

f(x)dx = 0 .

1.12 THEOREM. Let U ⊂ R be an open interval and let a ∈ U be any point. Let f be a

continuous real valued function and define for any x ∈ U

F (x) =

∫ x

a

f(t)dt .

The F is differentiable in U and

F ′(x) = f(x)

all x ∈ U .

Proof. Fix and x0 ∈ U . We have that

F (x)− F (x0) =

∫ x

x0

f(t)dt .
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Hence ∣∣∣∣F (x)− F (x0)

x− x0

− f(x0)

∣∣∣∣ =

∣∣∣∣∣
∫ x

x0
[f(t)− f(x0)]dt

x− x0

∣∣∣∣∣ .
For any ε > 0 there exists δ > 0 such that

|f(x)− f(x0)| < ε

for all x with |x− x0| < δ. Thus, by the Lemma above∣∣∣∣∫ x

x0

[f(t)− f(x0)]dt

∣∣∣∣ < ε|x− x0|

for all x with |x− x0| < δ and hence∣∣∣∣F (x)− F (x0)

x− x0

− f(x0)

∣∣∣∣ < ε

for all x with |x− x0| < δ. Hence F (x) is differentiable at x0 and its derivative is f(x0).


