1 Integration of functions

In the following we consider the closed interval [a,b] C R and f a real valued, bounded
function defined on [a, b]. Our goal is to give a definition of the Riemann integral and derive
the fundamental theorem of calculus. I follow the great problem book of Polya and Szgo
“Aufgaben und Lehrsatze aus der Analysis I”. I am sure that this book has been translated

into English.

1.1 Partitions, upper sums and lower sums

Apartition P of the interval [a,b] is a collection of distinct points in
a=2g< T < Tp1 <xTp,=>.
Given two partitions P and Q we define the refinement of P and O to be
PUQ.

The upper sum

Us(P) = Z sup. fla)(z; — i)

and the lower sum

LyPy=2_ inf  fla)(w; =)

Recall that
sup  f(x) =lub{f(x): 2,01 <z <z}

zj—1<z<x;
and likewise

inf  f(zx) =g¢lb{f(z): 2,01 <z <ux}.

zj1<z<x;
We have, obviously that
Us(P) = Ly(P)

and both sums are finite since the function is bounded.

1.1 LEMMA. Let P C Q, i.e., Q is a refinement of P. Then

Up(Q) < Us(P)

and

Ly(Q) = Ly (P) .



Proof. Take two successive points x; > x;_; for which there exists one or more points
Ti1 # Y1, ..., Yk 7 T; with
Tjiog <y <yYo-r <Yp <Tj
Such a situation must exist since Q is a refinement of P. Otherwise P = O and there is
nothing to prove.
Now,

sup  f(z) >max{ sup f(z), sup f(z),..., sup f(z)}

zj—1<z<wj zj_1<z<y1 y1<z<y2 yr<z<z;

and hence

sup  f(z)(r; —75-1)

$j_1§$S$]'
> sup  f(@)(yr—xjo) + sup f(@)(ye—y) +-o+ sup f(@) (@5 — ) -
zj—1<z<y1 y1<z<y2 Yy <r<z;
This inequality proves that the first inequality of the lemma. The other follows in a similar
fashion. O

1.2 COROLLARY. Let P and Q be any two partitions. Then
Up(P) = Ly(Q) -
In particular
Up = inf{U;(P) : P is a partition}

and

Ly =sup{L;(P): P is a partition} ,
and

Ur> Ly .

We call the numbers Uy, Ly the upper respectively, lower limat.

Proof. Take the union P U Q which is a refinement of both, P and Q. By Lemma 1.1 we
have that
Up(P) 2 Up(PUQ) > Ly(PUQ) > Ly(Q) .

The set {L¢(P) : P is a partition} is bounded above and the set {U;(P) : P is a partition}
is bounded below and therefore Uy and L; are defined and Uy > Ly. O



1.3 DEFINITION. A function f : [a,b] — R is integrable in the sense of Riemann, if it

is bounded and if the upper limit equals the lower limit, i.e.,

Up= Ly,

/a ’ f(x)dz .

1.4 Remark. Thus, in order to decide whether a function is integrable we have to find a

and we denote this number by

sequence of partitions P, such that Ur(P,)— L (P,) converges towards zero. This is, because
Us(Pn) = Ly(Pn) 2 Uy = Ly 2 0.

There is of course great flexibility in finding such partitions.

1.2 Continuous functions and monotone functions are integrable

1.5 THEOREM. Any bounded monotone function on the interval [a,b] is integrable.

Proof. We may assume that the function is monotone increasing. The proof for monotone
decreasing functions follows by considering —f. All we have to do is to exhibit a sequence

of partitions P, so that Us(P,) — L¢(P,) > 0 converges to zero. Pick

Observe that

3

h—
Up(Pa) — Ly(Pa) = sup f(e)— inf_fa)|
=1 zj_1<z<z; Tj—1STST5
which equals
- b— b) — b—
> 1) = o) = U0 = )b~
which tends to zero as n — oc. [

For the next theorem the notion of width of a partition P which is defined as
max{z; —x;j_1: 1 <j<n}

is useful.



1.6 THEOREM. Any continuous function on the interval [a,b] is integrable.

Proof. Every continuous functions on a closed interval is uniformly continuous. Pick € > 0.

There exists § > such that for all z,y € [a,b] with |z — y| < 6 we have that

€
b—a

[f(z) = fly)] <

Pick any partition P of width less than ¢, e.g., the one before with
b—a

<9.
n
Then
0 < Us(P) sup () — inf  f(x)| (z; —xj_1) .
T 1<m<x] zj—1<w<z;

7j=1

Further, since f is uniformly continuous on [a, b] it is bounded and

sup  f(z) = f(2)

$]'_1§1‘S$]'

for some x;_y <’ < z;. Likewise

inf_ f(z) = f(y)

zj1<z<zT;

for some z;_; <y < x;. Since the width of the partition is less than J we also have that

|2" — /| < d and hence

0| sw fo)-inf | f) =160 - 6 < —.
Thus .
0 < Uf(P) = Ly(P) < 3 (e w10 —=c
Since ¢ is arbitrary, we have that Uy = L. O

1.3 Some examples

Example 1: Consider the function f(x) on [0, 1] defined by

1 if z is rational
flz) =

0 if x is irrational



Pick any partition P. Then

n n

Us(P) = Z sup  f(x)(x; —xj_q) = Z(xj —xj1) =1

j:1 iEj,lSZESCEj jil

since every interval [z;_;,x;| contains rational numbers. Likewise
Ly(P) =0
since every interval [z;_1,x;] contains irrational numbers. Thus the upper limit U; = 1 and

the lower limit L; = 0. This function is not integrable.

Example 2: Consider the functions - on the interval [a,b] with a > 0. Let P is any

partition note that on the interval [z;_;,x;] we have sup m% = le - and inf w—lg = % Now
J— J
1 1 . Tj— Tj—1
Tj—1 Xy XTjlj—1
and
1 Ti— Ti_q 1
— (1 —xj ) < 2—21—=< (xj —xj_q)
x? j ] 25751 x?_1 j j
we find that
= 1 1
LP <Y (- ) <)
—1 C(]J_l J]J
‘77
But

Example 3: The function 2™, n € N, being continuous, is integrable on the interval
la,b]. We assume that @ > 0. Once more choosing a partition we concentrate on the interval

[z;_1,%;] and note that
n
n+1 n+1y k_n—k
(“’j - 37]‘—1) = (2; — 1) § TiTi g -
k=0
Since x; > x;_; we have that

(n+ D2t <> abal=f < (n+ 1)),



Hence, as before

Sy (@t — a2t
= <U
n—+1 - f(P)

and once more we have a telescoping sum and obtain that for all partitions P

Ly(P) <

bn+1 o an—l—l

Ly(P) <

< .
n+1 _Uf(P)

Hence

b
bn+1_ n+1
/x"dx:—a.
a n+1

An interesting example is given by the function f(z) = 1 on [a,b], where a > 0. Once

more, this function is integrable and we try to compute the integral. Choose the sequence

of partitions

Sl=

Pn:{a(ﬁ) k=0,1,...,n}

a

Now, compute

=
S
N
SN—
I
<
IM:
o
)
—
|o~
~ |
i
—
=)
7N
Q|
~__
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|
=)
7N
ISHRS
~__
SN—
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3
|
—_
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and

Recall that
Up(Pn) 2 Uy 2 Ly 2 Ly(Pn) -

Although we did not talk yet about the logarithm, it is easy to see that

lim n((é)i ~1) = lim =n(l - (%) ) 10g(§) .

n—oo a n—oo

bq b
Zdx = log(2) .
/ax:v og(a)

1.4 Linearity of the integral and Inequalities for integrals

Hence

1.7 THEOREM. Let f and g be two integrable functions on the interval [a,b]. The f+ g

15 also integrable and

/ab(f(x) + g(z))dz = /abf(x)dx 4 /abg(a:)da: ‘



Likewise, if ¢ € R is any constant the cf(x) is integrable and

/ab of ()dz = c/abf(x)dx |

Proof. Pick any € and choose partitions P and Q such that

/bf(x)dx —e/2 < Ly(P) < Us(P) < /bf(x)dx +¢/2
and ) )
/ g(x)de — /2 < L(Q) < U,(Q) < / g()da +¢/2
Taking the reﬁnemeilt of the two partitions R =P U Q WZ know that
Lyg(R) = Lf(R) + Ly(R) ,
which follows from the fact that

inf(f(z) +g(x)) > mf f(z) +inf g(z) .

Since

Li(R) + Ly(R) = L(P) + Ly(Q)

we have that

Lrg(R) > /b flx)de + /bg(m)dm _e.
Similarly, ' '
Ur+g(R) < Us(R) + Uy(R)
since

sgp(f () +g(x)) < sup f (z) + Sup g(x) .
Hence we have that
b b
Ussy(R) < US(P) + U,(Q) </ f(x)dx+/ g(2)dz + = .

Thus
/ f(x)dac—i—/ g(2)de —= < Lysy(R) < Upyy(R) </ f(x)der/ g(z)dz+¢ |

which proves the additivity of the integral. The proof of the other statement is easy and is

left as an excercise. O

Here is a little lemma concerning real functions defined on a set S C R.



1.8 LEMMA. Let f be a real valued function on a set S C R. Then
sup f(z) — inf f(z) > sup |f(z)] — nf|f(z)] .
S S S S

Proof. We distinguish three cases.

a) f(z) >0 for all x € S. In this case, we have that f(z) = |f(x)| and the inequality is an
equality.

b) f(z) <0 for all z € S. In this case
sup () = — inf(~f(@) = — inf |£(z)]
s

Likewise

inf f(x) = —sup(=f(z)) = = Sup |f ()]

s
and we have that

sup f(x) — inf £() = — inf | £(z)] + sup | f(x)
S S

and once more there is equality.

The interesting case is

¢) f(z) changes sign on S. Clearly

sup f(x) = sup{f(z) : w € S, f(x) > 0}

and
inf f(z) =inf{f(x):x €S, f(x) <0},
inf f(z) = —sup{—f(x):x € S,—f(x) >0}
But,

sup{f(z) : x € 5, f(z) > 0} + sup{—f(2) : # € 5, —f(w) > 0} = sup| /()|
since the sets where f(x) > 0 and the set where f(z) < 0 are disjoint. Hence
sup f(x) — inf f(z) = sup| ()| > sup | F(2)| — inf ()]
S S S

and we are done.



1.9 THEOREM. Let f be an integrable function on [a,b]. Then its absolute value |f| as
well as its positive part defined by fi(x) = max{f(z),0} and its negative part defined by
f-(z) = max{—f(z),0} are integrable.

Proof. Consider the upper sum Uf(P) and the lower sum L(P) for the function f(z), where
P is a partition. Since

n

Ui(P) — L§(P) = Z sup f(x)— inf f(x)| (z; —xj-1) .

=1 Tj1<x<T; zj1<w<z;
Bu the above lemma we have
sup  f(z)— inf  f(z)> sup |f(z)]— inf |f(z)]
zj_1<a<z; Tj—1ST<T; Tj_1>a<z; Tj—1ST<T;

and hence

Up(P) — Ly(P) = Uy (P) — Ly (P)

and | f| is integrable if f is integrable. Indeed, f integrable means that for any e there exists
a partition such that

e > Up(P) — Ly(P)

and hence by the above
e>Up(P) = Lig(P) 2 0.

e @) + 1f(a) @) + 1f(e)
z)+|j(x —fz)+ |5z
f+($):f , J-(z) = 5
the integrability follows from the one of |f| and the linearity of the integral. O]

The following is immediate.

1.10 LEMMA. Let f be an integrable function on |a,b]. Hence there exists a constant
M > 0 such that | f(x)| < M for all € |a,b]. Then

/ab f(z)dx

1.5 Fundamental Theorem of Calculus

< M(b—a).

1.11 THEOREM. Let f be a function that is integrable on [a,b] and on [b,c|. The f is

integrable on [a,c] and
c b c
dr = d dz .
[ 1@ = [ s@acs [ s
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Proof. Pick any € > 0 and let P be a partition of [a, b] such that

/bf(x)d;v _ 22 < Ly(P) < U;(P) < /bf(:c)d:c 4 e/2
and Q be a partition of [b, ¢] such that
/bcf(m)dx — /2 < Ly(Q) <UQ) < /bc f(z)dx +€/2
The union R = P U Q, although not a refinement is a partition of the interval [a, c|]. Further,
Li(R) = Ly(P) + Ly (Q)

and
Up(R) = Uy(P) + Us(Q) .

Hence,

/abf d:c—l—/f Jdx —e < Ly(R) < Uy(R /f dq:—|—/f )z + ¢ .

We adopt the convention that

/abf(a:)d:v = —/baf(x)dx
| rtayi -

1.12 THEOREM. Let U C R be an open interval and let a € U be any point. Let [ be a

continuous real valued function and define for any xr € U

- / o

and

The F' s differentiable in U and

allz e U.

Proof. Fix and z¢ € U. We have that



Hence
F(z) — F(o)

JEIf() = f(xo))dt

—f(«To) =

T — 2o T — Xo

For any € > 0 there exists 6 > 0 such that

[f(x) = flao)| <€

for all z with |x — xo| < 0. Thus, by the Lemma above

/x[f(t) — f(xo)]dt| < elz — xo
for all  with |z — 2| < 0 and hence
'F@c) AR
r — XTg

for all x with |z — xo| < . Hence F(x) is differentiable at z, and its derivative is f ().
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