Homework Set for Week 12




meiric fanctions, show that bahz—a
T 5 strictly decreasing.

is strictly Increasing on {f}, %} while the: s;ag-—wa;.e

From problem 4 {page 109 of 1A} we get:

Eemma: # § is a differentiable real valued function on an open interval o R then f is
Proof of the Lemma: Let f - Jo, 5] — R be differentioble on (e, b). Let z,y € {a,b) and
let ¥ > z. By the Mean Value Theorem {page 105 of TA) there exists ¢ € {z,g) such

that
Ja) - ey =Fldz—9)

H f{c) > 0 since y > = we get fly) — Flz) = flei{z—y) > 0, which implies

£(y) > f(@), ic. f s increasing. Simitarly, if f/(c) < 0 since g >  we get Fy)— f(z) =

FleY{z —y) < 0, which implies f{g) < flz), ie [ s decreasing. Since this holds for

all z,y then it is true for the entire interval {g,b). PFurthermore, if we switch the

inequalities from > (<) to > (<} # follows that f is strictly inereasing (decreasing).
07

To show: f : (8,2} — R, where f{z} = tanz — 2 i strictly mcreasing by showing
Fliz) >0forz € (0,2) and g: (0, %) — R, where gl{z) = %% is strietly decreasing by
showing g'(z} <0 for z € (0, %)

We know by the proposition in. page 101 of TA. and by the properties of the trigonometric
properties that

Flzy=sec’z—1>8 forallzc (.0’, —g)

and hence f(z) = tanz — z is strietly inereasing. Similarly,

TCOST — SiRL CGS x LO8E

g(e) = -

{tanz — zJ.
% oSz ( )

Since we just showed that tan x —z is strictly increasing in this interval and tan (0) = 0,
then tanz —z > 0. We also know that 2® > 0,cosz > 0 on the interval ¢ € (0,3).
Hence g'{z) < 0 on z € (0, %) and therefore g{z) = 2% is strictly decreasing.

. Prove that a differentiable function on R with a bounded derivative is uniformly con-
tious.

Proof

Let f: R — R be a differentiable function with bounded derivative, i.e. there exists
M e R, M >0 so that

iz} <M forallzeR.




To show: For every € > 0 there exists § so that whenever |$ —y < 5 we have that
|f(z)— fly)| <eforall z,y € R.

Select any x,y € R and without loss of generality let y > z (otherwise just interchange
the two). Then by the Mean Value Theorem on page 105 of IA there exists ¢ € {z, y)
so that

(w) =) = f(y)|

s =17 or |f@)— Fl =17z —ui.

But since |f/| is bounded we get
1z} — F =1F )z —yl < Mz —yi
Now for any given € > 0 let = 57, then whenever [z — y| < § we get that

F@) - SN < Mo -yl < M- =e.

Since § here does not depend on z or y, uniform continuity follows.
I

8. Let a,b € R,a < b, and let f, ¢ be continuous real-valued functions on [a,b] that are

differentiable on {a,b). Prove that there exists a number ¢ € (@, b) such that
F(e){g(b) — g(a)) = g'(c) (f(b) — f(a)}.
(Hint: Consider the function
F(z) = (F(z) — fla)} (9(b) — gla)) — {g{z} — g(a)) (F(b) — f(a)} )
Proof
We consider the function F{z) as stated above. Since both f and g are differentiable
on (e, b), then by the proposition on page 101 of IA the derivative of F(z) is given by
Fi(z) = f'(z) (gtb)} — g(a)) — g'(z) (F(b) — f{a)).

Since F'(a) = F'(b) = 0, continuous and real-valued on [a, b] and differentiable on {a, b)
by Rolle’s theorem (page 104 of IA) there exists a ¢ € R so that F'(¢) = 0. Hence we

find
F'(c) = 0= f{c) (g(b) — g(a)) — ¢'(c) (f(b) — f(a))

or

e} (9(®) — g(a)) = ¢'(c) (£(b) — f(a))




Chapter VI

2. Prove that folf(:c) dz=0if f(1/n)=1forn=1,2,3,... and f(z) = 0 for all other z.

Proof
Let the partition sequence P, be defined as
k
n=—, k=0,1,2,...,n
n

where n € {z € N: 2z > 3 and z is a prime number}. With this sequence of partitions
the upper sum is given by

n—1
Uf (Pn) = qub{f(.’ﬂ) L&y S T S .’Bj_;.l} ($j+1 - ZCj)
=0

. . 3
=(z1 —zo) +(z2— 1) + (Tf — Tp—yp) = -
whereas the lower sum is given by

n—1

Li(Po) =Y g.Lb{f(z):z; <z <mjpa} (mj11 —25) =0

=0

since f(1/n) = 1 and f(z) = 0 for all other z. It is then made clear that i
3
Up (Pn) — Ly (pn.):"n*ﬁ">0 as n—¥ oo

and thus the integral exists. Furthermore since we can always select n > N for any
¢ > 050 that ¢ > 3, and consequently € > Uz (Po) 2 Iy(f) = IL(f} > Ly (Po) 2 0. It

follows that fol flz)dz =0
(i

3. Does fol f{z) dz exist if f is defined as follows?

if x is not rational

ifz= 2E’,W}mre p and ¢ are integers
with no common divisors
other than £+ 1, and ¢ > 0.

oy = D

fz) =

Solution
Yes. Let P be a partition of [0, 1]. Then every interval [z, z;11] contains both rational
and irrational numbers. As such, the lower sum will be

n—1
Li(P) = ;ze[:gﬁaf:m]f(f”) (@1 —x;) =0

3



since each partition contains an irrational mimber.

The upper sum is a little trickier to find. We use the fact that for any given n € N
there are only a finite number of x such that f(z) > 1/n. This is true since f(z) =0
if  is not rational and if z is rational then f(p/q) = 1/g > 1/n which implies that
0 < ¢ < n. Since p/g <1 and p and ¢ have no common divisors, there are at most n
choices for p. Thus we may conclude that most points are close to zero and we will use
this fact to upper bound the upper sum.

We know that there are at most m values for z € [0,1] so that f(z) > 1/n. Let

{21, %2, ..., Tm} be a finite set of z values so that f(z) > 1/n and let M = maz{f(z) :
z € {x1,%2,...,Zm}}. Now let €/2 > 0 and select n such that 1/n < ¢/2. Finally, let

| M fze{x,22,....Lm}
g(z) = { 0  otherwise

then f(z) < €/2+ g(z). For any partition P of [0, 1] the upper sum is bounded by:
€
0 < Up(P) < Uerg(P) S U(P) + Ug(P) = 5 + Uy(P)

But g{z) is continuous at 0 with a finite number of discontinuities, hence it is integrable
with integral 0 (the proof to this will be shown in the following problem). As a
consequence we can find a partition Q so that U,(Q) < ¢/2. It follows that

€
Tz =¢

0 < L;(Q) < I() < Io() < U(Q) < S+04(Q) < §+ &

and since e can be made arbitrarily small the integral of f exists and fol f(z)dz =0.
O

. Prove that if the real-valued function f on the interval [a, b] is bounded and is contin-
uous except at a finite number of points, then j;ll f(z)dz exists.

Proof

We first reduce the problem to the case of having exactly one discontinuity by break-
ing up the interval [a,b] to subintervals where each subinterval contains exactly one
discontinuous point. If f is integrable on each subinterval, then it is integrable on [a, b]
by the proposition on page 123 of IA.

We let z* be the point of discontinuity of f on the subinterval [a*, b*] and suppose z* #
a* and z* # b*. Then we select a smaller subinterval such that =* € (ar,b;) C [a*, b*]
which satisfies

(w sup f(a)~ __in ]f(ar)) (b —ar) < 5

E[a.*,b*] .’I:E[I‘I*,b*

Then |a*, b*] — (a1, b1) consists of two disjoint intervals where f is continuous and thus
integrable by the theorem on page 123 of IA. We can find a combined partition P

4




such that in total these two disjoints intervals result in Us(P) — L#(P) < ¢/2. But the
points of P form a partition of all [¢*, b*|, and since we selected the subinterval (ay, b;)
to satisfy the upper and lower sum subtraction be less than ¢/2 we get

Uf(P) - Lf(P) < €

Since a similar argument can be obtained if z* = a* or ¥ = ¥ we may conclude the
integral exists.

O
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