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Problem 9

(Integral test). Let f : {x ∈ R|x > 1} → R be a decreasing positive-valued

function. Prove that

∞∑
n=1

f(n) converges if and only if lim
n→∞

∫ n

1

f(x)dx exists.

(Hint: draw a diagram.)

Let f : {x ∈ R|x > 1} → R be a decreasing positive valued function. Let

Sn =
∑n
j=1 f(n). f is bounded, since 0 < f(x) 6 f(1) for all x, and monotone,

so it is integrable on any closed interval [a, b] with a > 1. In particular
∫ n
1
f(x)dx

exists for any positive integer n. Define Pn = {1, 2, . . . , n} as a partition of [1, n],

then Uf (P) =
∑n−1
j=1 = Sn−1 and Lf (P) =

∑n−1
j=1 f(j + 1) = Sn − f(1). Since

0 6 Lf (P) 6
∫ n
1
f(x)dx 6 Uf (P), it follows that 0 6 Sn − f(1) 6

∫ n
1
f(x)dx 6

Sn−1.

Suppose
∑∞
n=1 f(n) converges. Denote its limit by L, then limn→∞ Sn−1 =

limn→∞ Sn = L and so
∫ n
1
f(x)dx 6 Sn−1 6 L all n, hence limn→∞

∫ n
1
f(x)

exists.

Suppose limn→∞
∫ n
1
f(x)dx exists. Denote its value by I, then Sn − f(1) 6∫ n

1
f(x)dx 6 I and so Sn 6 I+f(1). Sn is bounded and monotonically increas-

ing (since f(n) > 0 all n), and so it converges.
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Problem 11

Show the convergence of the series

∞∑
n=1

(
1

n
− 1

n+ x

)

of real-valued functions on R \ {−1,−2,−3, . . . }.

Let f1, f2, f3, . . . be a sequence of real-valued functions on R\{−1,−2,−3, . . . }
with fn(x) =

∑n
j=1

(
1
j −

1
j+x

)
. We show that the sequence of functions con-

verges pointwise. There are three cases to consider:

If x = 0, then fn(x) = 0 for all n, and so clearly limn→∞ fn(x) = 0.

If x > 0, then we write fn(x) =
∑
j=1

(
1
j −

1
j+x

)
=
∑
j=1

x
j(j+x = x

∑n
j=1

1
j(j+x) .

Choose N so that N > x, then for all j > N ,we have 1
j(j+x) 6 1

j(j+j) =
1

2j2 . We know that limn→∞
∑n
j=1

1
j2 exists (in fact the limit is π2

6 ), and so

limn→∞
x
2

∑n
j=1

1
j2 exists and by the comparison test, limn→∞

∑n
j=1

(
1
j −

1
j+x

)
exists.

If x < 0, choose N so that N > |x|. Then 1
j(j+x) 6 1

j(j+0) = 1
j2 for all j > N ,

and so similarly limn→∞
∑n
j=1

(
1
j −

1
j+x

)
exists by the comparison test.
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Problem 12

Show that if a1+a2+a3+ . . . is an absolutely convergent series of real numbers,

then a21 + a22 + a23 + . . . converges.

Since
∑∞
n=1 an is absolutely convergent,

∑∞
n=1 |an| converges. Therefore limn→∞ an =

0. Convergent sequences are bounded, so there exists M ∈ R so that |an| 6M

for all n, and so a2n = |an||an| 6 M |an| for all n. Since
∑∞
n=1 |aj | converges,∑∞

n=1M |an| converges, and so by the comparison test,
∑∞
n=1 a

2
n converges.
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Problem 13

(Root test). Let

∞∑
n=1

an be a series of real numbers. Show that if there exists a

number ρ < 1 such that n
√
|an| 6 ρ for all sufficiently large n, then the series is

absolutely convergent.

Let
∑∞
n=1 an be a series where |an|

1
n 6 ρ for all n > N for some N , where

ρ < 1. Then |an| 6 ρn for all n > N . Since |an| > 0, this means |ρ| < 1, and so

the series
∑∞
n=1 ρ

n converges. Therefore, the series
∑∞
n=1 an converges by the

comparison test.
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Problem 15

Prove that if

∞∑
n=1

an and

∞∑
n=1

bn are absolutely convergent series of real numbers

then the series

∞∑
n,m=1

anbm is also absolutely convergent, and

∞∑
n,m=1

anbm =

( ∞∑
n=1

an

)( ∞∑
n=1

bn

)
.

Since
∑∞
n=1 an and

∑∞
n=1 bn are absolutely convergent, limn→∞ an = limn→∞ bn =

0. Convergent sequences are bounded, so there exists M ∈ R so that |an| 6M

and |bn| 6 M for all n. Hence |an|bm 6 |an|M for all m. As M is constant,∑∞
n=1 anM converges absolutely, so by the comparison test,

∑∞
n,m=1 anbm con-

verges absolutely. Therefore any rearrangement of its terms converges absolutely

(to the same limit). Hence,

∞∑
n,m=1

anbm = (a1b1 + a1b2 + a1b3 + . . . ) + (a2b1 + a2b2 + a2b3 + . . . ) + . . .

= a1b1 + (a1b2 + a2b1) + (a1b3 + a2b2 + a3b1) + · · ·+

(a1bn + a2bn−1 + · · ·+ anb1) + . . .

=

( ∞∑
n=1

an

)( ∞∑
n=1

bn

)
.
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