MATH 4317 Homework 12

Keith Belcher Lixian Chen Andrea Crews

30 November 2012

Contents

Problem 9	2
Problem 11	3
Problem 12	4
Problem 13	5
Problem 15	6

(Integral test). Let $f: \{x \in \mathbb{R} | x \ge 1\} \to \mathbb{R}$ be a decreasing positive-valued function. Prove that $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\lim_{n \to \infty} \int_{1}^{n} f(x) dx$ exists. (Hint: draw a diagram.)

Let $f: \{x \in \mathbb{R} | x \ge 1\} \to \mathbb{R}$ be a decreasing positive valued function. Let $S_n = \sum_{j=1}^n f(n)$. f is bounded, since $0 < f(x) \le f(1)$ for all x, and monotone, so it is integrable on any closed interval [a, b] with $a \ge 1$. In particular $\int_1^n f(x) dx$ exists for any positive integer n. Define $\mathcal{P}_n = \{1, 2, \ldots, n\}$ as a partition of [1, n], then $U_f(\mathcal{P}) = \sum_{j=1}^{n-1} S_{n-1}$ and $L_f(\mathcal{P}) = \sum_{j=1}^{n-1} f(j+1) = S_n - f(1)$. Since $0 \le L_f(\mathcal{P}) \le \int_1^n f(x) dx \le U_f(\mathcal{P})$, it follows that $0 \le S_n - f(1) \le \int_1^n f(x) dx \le S_{n-1}$.

Suppose $\sum_{n=1}^{\infty} f(n)$ converges. Denote its limit by L, then $\lim_{n\to\infty} S_{n-1} = \lim_{n\to\infty} S_n = L$ and so $\int_1^n f(x) dx \leq S_{n-1} \leq L$ all n, hence $\lim_{n\to\infty} \int_1^n f(x)$ exists.

Suppose $\lim_{n\to\infty} \int_1^n f(x) dx$ exists. Denote its value by I, then $S_n - f(1) \leq \int_1^n f(x) dx \leq I$ and so $S_n \leq I + f(1)$. S_n is bounded and monotonically increasing (since f(n) > 0 all n), and so it converges. \Box

Show the convergence of the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right)$$

of real-valued functions on $\mathbb{R} \setminus \{-1, -2, -3, \dots\}$.

Let f_1, f_2, f_3, \ldots be a sequence of real-valued functions on $\mathbb{R} \setminus \{-1, -2, -3, \ldots\}$ with $f_n(x) = \sum_{j=1}^n \left(\frac{1}{j} - \frac{1}{j+x}\right)$. We show that the sequence of functions converges pointwise. There are three cases to consider:

If x = 0, then $f_n(x) = 0$ for all n, and so clearly $\lim_{n \to \infty} f_n(x) = 0$.

If x > 0, then we write $f_n(x) = \sum_{j=1} \left(\frac{1}{j} - \frac{1}{j+x}\right) = \sum_{j=1} \frac{x}{j(j+x)} = x \sum_{j=1}^n \frac{1}{j(j+x)}$. Choose N so that N > x, then for all j > N, we have $\frac{1}{j(j+x)} \leqslant \frac{1}{j(j+x)} = \frac{1}{2j^2}$. We know that $\lim_{n\to\infty} \sum_{j=1}^n \frac{1}{j^2}$ exists (in fact the limit is $\frac{\pi^2}{6}$), and so $\lim_{n\to\infty} \frac{x}{2} \sum_{j=1}^n \frac{1}{j^2}$ exists and by the comparison test, $\lim_{n\to\infty} \sum_{j=1}^n \left(\frac{1}{j} - \frac{1}{j+x}\right)$ exists.

If x < 0, choose N so that N > |x|. Then $\frac{1}{j(j+x)} \leq \frac{1}{j(j+0)} = \frac{1}{j^2}$ for all j > N, and so similarly $\lim_{n\to\infty} \sum_{j=1}^n \left(\frac{1}{j} - \frac{1}{j+x}\right)$ exists by the comparison test. \Box

Show that if $a_1 + a_2 + a_3 + \ldots$ is an absolutely convergent series of real numbers, then $a_1^2 + a_2^2 + a_3^2 + \ldots$ converges.

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, $\sum_{n=1}^{\infty} |a_n|$ converges. Therefore $\lim_{n\to\infty} a_n = 0$. Convergent sequences are bounded, so there exists $M \in \mathbb{R}$ so that $|a_n| \leq M$ for all n, and so $a_n^2 = |a_n||a_n| \leq M |a_n|$ for all n. Since $\sum_{n=1}^{\infty} |a_j|$ converges, $\sum_{n=1}^{\infty} M |a_n|$ converges, and so by the comparison test, $\sum_{n=1}^{\infty} a_n^2$ converges. \Box

(Root test). Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. Show that if there exists a number $\rho < 1$ such that $\sqrt[n]{|a_n|} \leq \rho$ for all sufficiently large n, then the series is absolutely convergent.

Let $\sum_{n=1}^{\infty} a_n$ be a series where $|a_n|^{\frac{1}{n}} \leq \rho$ for all n > N for some N, where $\rho < 1$. Then $|a_n| \leq \rho^n$ for all n > N. Since $|a_n| \geq 0$, this means $|\rho| < 1$, and so the series $\sum_{n=1}^{\infty} \rho^n$ converges. Therefore, the series $\sum_{n=1}^{\infty} a_n$ converges by the comparison test. \Box

Prove that if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are absolutely convergent series of real numbers then the series $\sum_{n,m=1}^{\infty} a_n b_m$ is also absolutely convergent, and

$$\sum_{n,m=1}^{\infty} a_n b_m = \left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} b_n\right).$$

Since $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are absolutely convergent, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$. Convergent sequences are bounded, so there exists $M \in \mathbb{R}$ so that $|a_n| \leq M$ and $|b_n| \leq M$ for all n. Hence $|a_n|b_m \leq |a_n|M$ for all m. As M is constant, $\sum_{n=1}^{\infty} a_n M$ converges absolutely, so by the comparison test, $\sum_{n,m=1}^{\infty} a_n b_m$ converges absolutely. Therefore any rearrangement of its terms converges absolutely (to the same limit). Hence,

$$\sum_{n,m=1}^{\infty} a_n b_m = (a_1 b_1 + a_1 b_2 + a_1 b_3 + \dots) + (a_2 b_1 + a_2 b_2 + a_2 b_3 + \dots) + \dots$$
$$= a_1 b_1 + (a_1 b_2 + a_2 b_1) + (a_1 b_3 + a_2 b_2 + a_3 b_1) + \dots + (a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1) + \dots$$
$$= \left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} b_n\right).$$