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39. Forn=1,2...let I, = foﬂ/z sin” zdx
(a) Show that £ (coszsin™ ' 2) = (n — 1)sin™ >z — nsin"

Sol.

Using the chain rule, cos?

z =1—sin?z, and a bit of algebra:

d d
—(coszsin® 'z) = cosz—(sin" 'z —(cosz)sin" 'z
7z ) 7z )+ - (cos )
= (n—1)cos?zsin" 2z —sin"z
( )

= sin" 2z (n cos® z — cos® z — sin? x)

sin” 2z (n —nsin?z — 1)

= (n—1)sin" %z —nsin"z

(b) Show that I,, = =1,y if n > 2

Sol.

/2 /2
I, = / sin xz dx = / sinzsin® 'z dz
0 0

Using Integration by Parts

71'/2 -2

(n—1) cos zsin” " “z dz

o
= 0 +/ (n —1)(1 —sin® z) sin" 2 2 dx
0

And now, more algebra:

I, = (—coszsin"™
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= (n—=1)(Ip—2—1I,)
n—1
= Iy o
_ 1x3%5...(2n—1) 1 _ 2%4%6...(2n) _
(C) Show that IQn = mi, 12n+1 = m for n = 1,2



Sol.

From (b) we know that
2n—1 2n—12n-3

Ioy = "y = 20T
2 on "2 om 2n—2

Continuing this substitution, and recognizing that Iy = w/2:

~ook—1 Ty 2k —1
12”:<H 2% >10:2H 2%

k=1 k=1

2m—q.e

With a similar argument, and the knowledge that I; =1

om 9%k o %%k
SRR NI R <g2k+l> ! kgl%ﬂ

(d) Show that Iy, I, I5... is a decreasing sequence with

lim I, =0 and lim %

n— oo n—oo on

=1

Sol.

If we define a subset of the real line X = {z € R : 0 < 2 < 7/2} then sin X = [0, 1] and correspondingly
0<sin"™z <sin"z<1forallze X,sol, > Iv1 > Ihyo... . With some minimal effort, we can find this
family of functions is convergent with lim,, o sin” z = 0 for = € [0,7/2) and lim,_, sin™(7/2) = 1. Using
these, one can easily evaluate lim,,_,, I,, = 0. So the sequence Iy, I;... is decreasing and has a limit of 0.

Now we can write

I, I, 2n —1
1> ekt fonr 20

I2n I2n—1 2n

Letting n — oo, we can see that
. Iopi1
im

n—oo 2n

=1

(e) Show that

. 2%2x4x4..(2n) x (2n) ™
im -7
n—oo 1%3%x3%x5x5..2n—1)2n+1) 2

Sol.
Here we can recognize the substitution

2%2x4x4...(2n) % (2n) o
1#3%3%5x5.2n—1)(2n+1) 2 Iy,

Now all we must do is evaluate limit using our knowledge from (d)

. 2%2x4x4...(2n) * (2n) . omlgpy  ow
lim = lim — = —
n—soo 1%x3%3%x5x5.2n—1)2n+1) n-ooo2 Iy, 2




40(a) Show that if f: {x € R: 2 > ¢} — R is continuous, then

if(i):/lnﬂ f(:z:)dx+i<f(i)—/ii+l f(;p)dx)

Sol.
if(i) = zj; (f(i) + /;H f(z)dx — /iiH f(a:)dx))
noopitl n . i+1
= 2_;/ f()dz + ; (f(z) —/i f(a:)dx)
and

i:/ii“ f(:c)dxz/12f(x)dm+/23f(x)dx+.../:Hf(x)dx

Since f is a continuous real-valued function on the interval [i,i + 1], f is integrable. In addition, by the
proposition in p.123,

nopitl 2 3 n+1 il
Zl/ f(rfs)dﬂc=/1 f(oc)da:+/2 f(x)dsc—i—.../n f(:c)d:v:/l f(2)de

Therefore,

if(i) = /ln+1 f(a:)d:ché (f(i) - /im f(x)dx)

(b) Show that if ¢ > 1 then logi — f;ﬂ log zdz differs from —1/2i by less than 1/6i2.

Sol.

i+1 it+1
logi — / log xdx = / logi — log xdx

() o

We are going to use change of variables

©(b) b
/ f(@)dz = / Flo(®) (t)dt
w(a) a

where




Hence the integral (1) becomes

i+1 . 1 . 1 . 1
t

/ k%<vdw/l%<.z)dt/l%(lf>dt/1%(1+)dt
7 x 0 Z+t 0 (3 0 I3

The Taylor series for log(1 + z) at the point 0 is

1 1 1
log(l+x):x—§x2—|—§x3—Zm‘l—&—...

Therefore,

1 1 2
t t 1/t
/log(1+,>dt/ [() +... | dt
0 1 o |t 2\u
1 1
S P01 S /23§ B
%[ ]0+6i [t*]o
_ 1 n 1
O 1%2%i 0 2%3%xi?
We can take the sums starting from the second term:
1 1 73*4*2‘372*3*2'2
(2%3)i2  (3%4)i3 2% 3x3x4x4d
1 1 n 1 _3*4*4*5*1'7—2*3*4*5*@'64—2*3*3*4*2'5
(2%3)i2  (3%4)i3  (4%5)i* 2433 x4dx4%x5xi9

And recognize that for ¢ > 1, the highest-order term in the numerator dominates and, in fact, the numerator
is bounded between zero and the value of that highest-order term. Now, dropping the remaining numerator
terms, we have

11,1
6:2  20¢3 3044 642

Thus,

1

* 632

1 s 1
—f<1ogi—/ log zdr < ——
2 i 24



(c) Use part (a) with f = log, part (b), and Prob. 22, Chap. VI to prove

1
lim <logn! — (n + ) logn + n)
n—oo

exists.

Sol.

1
10gn!<n+ >logn+n210gz<n+ >logn+n
i=1

n+1 n i+1 1
:/ 1oga:dx+z<logi—/ logxda:> —<n+ )logn+n
1 i

i=1

— (n+1)log(n+1) — ( ) logn + Zn: (logi - /iiH logwda:)

i=1
1 1 n i+1
= nlog (m—)—l—log (n—i— )—i—logn—i—Z(logi—/ logmdaz>
n n 2 — i

Here we have used part (a). For the first term and the second term,

1 \"
lim nlog (H) = lim log (1 + ) =loge=1
n n—o00 n

n—oo

1 1
lim log (”+ ) — lim log (1+) =0
n—00 n n—00 n

For the third and fourth term,

"1 1

1 n _ i+1 1
210gn+;(logz/i logo:dx> <§logn+. 727+62

n

1 11 1 1
B O I e R | il
< 2(+2+3+ + = 0gn>+;6i2

We have used part (b). From Prob. 22, Chap. VI, we know that

1—|—1+1—|— —|—1 lo
p— — “ e _— — n
273 n_ %

is positive, decreases as n increases and hence that the sequence of these numbers converges to a limit
between 0 and 1. Furthermore, the summation

|

converges as n goes to oo because i > 1. Therefore, we have the existence of the limit

1
lim (logn! - (n + ) logn + n)
n—oo



(d) Use part (e) of the preceding problem to compute the above limit, thus obtaining

. n!
lm —— =1
n—00 nle~N\/2mn

Sol. We know that the sequence in (c) converges.

1
lim logn!— (n+ 2) logn+n=0C

n—roo

where C' is a constant. Taking exponential on both sides gives

1
exp (log n! — <n + 2) logn + n) = exp (log n! — logn(*1/2) 4 n)

n!
- n(nt1/2)e—n
n! c

n"e~"\/n -

Hence we can get

We are going to show that e is v/27 by using Wallis’ product and several approximation so that

|
lim ————— =1

n—oo nle="\/2Tn
The Wallis’ product is

. 2-2-4-4----. (2n) - (2n) T
lim ==
nroo 1133 @n-1)-2n—1)-2n+1) 2

Taking square roots on both sides yields

5 2-4-...(2n) T
im =./Z
n—so01.3.....(2n—1)-y/(2n+1) 2
Multiplying 2 -4 - ... (2n) at numerator and denominator gives
22.42. ... (2n)? T

m =
n—001.2.3.4..... (Qn_l).Qn. /(2n+1) 2

We rewrite the above equation as

(2nn!)? ™

lim

noe 2n)l-y/@nt ) V2

Now we are going to do approximation, i.e,

(27n!)? ™
(2n)!-\/(2n) 2

Substituting the equation (2) into the above equation gives



22n(n!)2 B 22n(nn€—n\/ﬁeo)2

(2n)!y/(2n)  (2n)27e—27\/2neC \/(2n)
22nn2ne—2nne2c

(2n)2ne—2n4/2neC/(2n)
€C
2

_c _ T
V2
Note that
(2n)! = (2n) M=) /(2n)e”
Therefore,
eC =Vor
Hence



