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39. For n = 1, 2... let In =
∫ π/2
0

sinn xdx

(a) Show that d
dx (cosx sinn−1 x) = (n− 1) sinn−2 x− n sinn x

Sol.
Using the chain rule, cos2 x = 1− sin2 x, and a bit of algebra:

d

dx
(cosx sinn−1 x) = cosx

d

dx
(sinn−1 x) +

d

dx
(cosx) sinn−1 x

= (n− 1) cos2 x sinn−2 x− sinn x

= sinn−2 x
(
n cos2 x− cos2 x− sin2 x

)
= sinn−2 x

(
n− n sin2 x− 1

)
= (n− 1) sinn−2 x− n sinn x

(b) Show that In = n−1
n In−2 if n ≥ 2

Sol.

In =

∫ π/2

0

sinn x dx =

∫ π/2

0

sinx sinn−1 x dx

Using Integration by Parts

In = (− cosx sinn−1 x) |π/2x=0 +

∫ π/2

0

(n− 1) cos2 x sinn−2 x dx

= 0 +

∫ π/2

0

(n− 1)(1− sin2 x) sinn−2 x dx

And now, more algebra:

In = (n− 1)

(∫ π/2

0

sinn−2 x dx−
∫ π/2

0

sinn x dx

)
= (n− 1) (In−2 − In)

=
n− 1

n
In−2

(c) Show that I2n = 1∗3∗5...(2n−1)
2∗4∗6...(2n)

π
2 , I2n+1 = 2∗4∗6...(2n)

3∗5∗6...(2n+1) for n = 1, 2...
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Sol.
From (b) we know that

I2n =
2n− 1

2n
I2n−2 =

2n− 1

2n

2n− 3

2n− 2
I2n−4...

Continuing this substitution, and recognizing that I0 = π/2:

I2n =

(
n∏
k=1

2k − 1

2k

)
I0 =

π

2

n∏
k=1

2k − 1

2k

With a similar argument, and the knowledge that I1 = 1

I2n+1 =
2n

2n+ 1
I2n−1 =

(
n∏
k=1

2k

2k + 1

)
I1 =

n∏
k=1

2k

2k + 1

(d) Show that I0, I1, I2... is a decreasing sequence with

lim
n→∞

In = 0 and lim
n→∞

I2n+1

I2n
= 1

Sol.
If we define a subset of the real line X = {x ∈ < : 0 ≤ x ≤ π/2} then sinX = [0, 1] and correspondingly

0 ≤ sinn+1 x ≤ sinn x ≤ 1 for all x ∈ X, so In > In+1 > In+2... . With some minimal effort, we can find this
family of functions is convergent with limn→∞ sinn x = 0 for x ∈ [0, π/2) and limn→∞ sinn(π/2) = 1. Using
these, one can easily evaluate limn→∞ In = 0. So the sequence I0, I1... is decreasing and has a limit of 0.

Now we can write

1 >
I2n+1

I2n
>
I2n+1

I2n−1
=

2n− 1

2n

Letting n→∞, we can see that

lim
n→∞

I2n+1

I2n
= 1

(e) Show that

lim
n→∞

2 ∗ 2 ∗ 4 ∗ 4...(2n) ∗ (2n)

1 ∗ 3 ∗ 3 ∗ 5 ∗ 5...(2n− 1)(2n+ 1)
=
π

2

Sol.
Here we can recognize the substitution

2 ∗ 2 ∗ 4 ∗ 4...(2n) ∗ (2n)

1 ∗ 3 ∗ 3 ∗ 5 ∗ 5...(2n− 1)(2n+ 1)
=
π

2

I2n+1

I2n

Now all we must do is evaluate limit using our knowledge from (d)

lim
n→∞

2 ∗ 2 ∗ 4 ∗ 4...(2n) ∗ (2n)

1 ∗ 3 ∗ 3 ∗ 5 ∗ 5...(2n− 1)(2n+ 1)
= lim
n→∞

π

2

I2n+1

I2n
=
π

2
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40(a) Show that if f : {x ∈ R : x ≥ q} → R is continuous, then

n∑
i=1

f(i) =

∫ n+1

1

f(x)dx+

n∑
i=1

(
f(i)−

∫ i+1

i

f(x)dx

)
Sol.

n∑
i=1

f(i) =

n∑
i=1

(
f(i) +

∫ i+1

i

f(x)dx−
∫ i+1

i

f(x)dx)

)

=

n∑
i=1

∫ i+1

i

f(x)dx+

n∑
i=1

(
f(i)−

∫ i+1

i

f(x)dx

)

and

n∑
i=1

∫ i+1

i

f(x)dx =

∫ 2

1

f(x)dx+

∫ 3

2

f(x)dx+ . . .

∫ n+1

n

f(x)dx

Since f is a continuous real-valued function on the interval [i, i+ 1], f is integrable. In addition, by the
proposition in p.123,

n∑
i=1

∫ i+1

i

f(x)dx =

∫ 2

1

f(x)dx+

∫ 3

2

f(x)dx+ . . .

∫ n+1

n

f(x)dx =

∫ n+1

1

f(x)dx

Therefore,

n∑
i=1

f(i) =

∫ n+1

1

f(x)dx+

n∑
i=1

(
f(i)−

∫ i+1

i

f(x)dx

)
(b) Show that if i > 1 then log i−

∫ i+1

i
log xdx differs from −1/2i by less than 1/6i2.

Sol.

log i−
∫ i+1

i

log xdx =

∫ i+1

i

log i− log xdx

=

∫ i+1

i

log

(
i

x

)
dx (1)

We are going to use change of variables∫ ϕ(b)

ϕ(a)

f(x)dx =

∫ b

a

f(ϕ(t))ϕ′(t)dt

where

ϕ(x) = i+ x

f(x) = log

(
i

x

)
f(ϕ(t)) = log

(
i

i+ t

)
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Hence the integral (1) becomes∫ i+1

i

log

(
i

x

)
dx =

∫ 1

0

log

(
i

i+ t

)
dt = −

∫ 1

0

log

(
i+ t

i

)
dt = −

∫ 1

0

log

(
1 +

t

i

)
dt

The Taylor series for log(1 + x) at the point 0 is

log(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + . . .

Therefore,

−
∫ 1

0

log

(
1 +

t

i

)
dt = −

∫ 1

0

[
t

i
− 1

2

(
t

i

)2

+ . . .

]
dt

= − 1

2i
[t2]10 +

1

6i2
[t3]10 − . . .

= − 1

1 ∗ 2 ∗ i
+

1

2 ∗ 3 ∗ i2
− . . .

We can take the sums starting from the second term:

1

(2 ∗ 3)i2
− 1

(3 ∗ 4)i3
=

3 ∗ 4 ∗ i3 − 2 ∗ 3 ∗ i2

2 ∗ 3 ∗ 3 ∗ 4 ∗ i5

1

(2 ∗ 3)i2
− 1

(3 ∗ 4)i3
+

1

(4 ∗ 5)i4
=

3 ∗ 4 ∗ 4 ∗ 5 ∗ i7 − 2 ∗ 3 ∗ 4 ∗ 5 ∗ i6 + 2 ∗ 3 ∗ 3 ∗ 4 ∗ i5

2 ∗ 3 ∗ 3 ∗ 4 ∗ 4 ∗ 5 ∗ i9
...

And recognize that for i ≥ 1, the highest-order term in the numerator dominates and, in fact, the numerator
is bounded between zero and the value of that highest-order term. Now, dropping the remaining numerator
terms, we have

0 <
1

6i2
− 1

20i3
+

1

30i4
· · · < 1

6i2

Thus,

− 1

2i
< log i−

∫ i+1

i

log xdx < − 1

2i
+

1

6i2
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(c) Use part (a) with f = log, part (b), and Prob. 22, Chap. VI to prove

lim
n→∞

(
log n!−

(
n+

1

2

)
log n+ n

)
exists.

Sol.

log n!−
(
n+

1

2

)
log n+ n =

n∑
i=1

log i−
(
n+

1

2

)
log n+ n

=

∫ n+1

1

log xdx+

n∑
i=1

(
log i−

∫ i+1

i

log xdx

)
−
(
n+

1

2

)
log n+ n

= (n+ 1) log(n+ 1)−
(
n+

1

2

)
log n+

n∑
i=1

(
log i−

∫ i+1

i

log xdx

)

= n log

(
n+ 1

n

)
+ log

(
n+ 1

n

)
+

1

2
log n+

n∑
i=1

(
log i−

∫ i+1

i

log xdx

)

Here we have used part (a). For the first term and the second term,

lim
n→∞

n log

(
n+ 1

n

)
= lim
n→∞

log

(
1 +

1

n

)n
= log e = 1

lim
n→∞

log

(
n+ 1

n

)
= lim
n→∞

log

(
1 +

1

n

)
= 0

For the third and fourth term,

1

2
log n+

n∑
i=1

(
log i−

∫ i+1

i

log xdx

)
<

1

2
log n+

n∑
i=1

− 1

2i
+

1

6i2

< −1

2

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
+

n∑
i=1

1

6i2

We have used part (b). From Prob. 22, Chap. VI, we know that(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
is positive, decreases as n increases and hence that the sequence of these numbers converges to a limit

between 0 and 1. Furthermore, the summation

n∑
i=1

1

6i2

converges as n goes to ∞ because i > 1. Therefore, we have the existence of the limit

lim
n→∞

(
log n!−

(
n+

1

2

)
log n+ n

)
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(d) Use part (e) of the preceding problem to compute the above limit, thus obtaining

lim
n→∞

n!

nne−n
√

2πn
= 1

Sol. We know that the sequence in (c) converges.

lim
n→∞

log n!−
(
n+

1

2

)
log n+ n = C

where C is a constant. Taking exponential on both sides gives

exp

(
log n!−

(
n+

1

2

)
log n+ n

)
= exp

(
log n!− log n(n+1/2) + n

)
=

n!

n(n+1/2)e−n

=
n!

nne−n
√
n

= eC

Hence we can get

n! = nne−n
√
neC (2)

We are going to show that eC is
√

2π by using Wallis’ product and several approximation so that

lim
n→∞

n!

nne−n
√

2πn
= 1

The Wallis’ product is

lim
n→∞

2 · 2 · 4 · 4 · · · · · (2n) · (2n)

1 · 1 · 3 · 3 · · · · · (2n− 1) · (2n− 1) · (2n+ 1)
=
π

2

Taking square roots on both sides yields

lim
n→∞

2 · 4 · . . . (2n)

1 · 3 · · · · · (2n− 1) ·
√

(2n+ 1)
=

√
π

2

Multiplying 2 · 4 · . . . (2n) at numerator and denominator gives

lim
n→∞

22 · 42 · . . . (2n)2

1 · 2 · 3 · 4 · · · · · (2n− 1) · 2n ·
√

(2n+ 1)
=

√
π

2

We rewrite the above equation as

lim
n→∞

(2nn!)2

(2n)! ·
√

(2n+ 1)
=

√
π

2

Now we are going to do approximation, i.e,

(2nn!)2

(2n)! ·
√

(2n)
'
√
π

2

Substituting the equation (2) into the above equation gives
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22n(n!)2

(2n)!
√

(2n)
=

22n(nne−n
√
neC)2

(2n)2ne−2n
√

2neC
√

(2n)

=
22nn2ne−2nne2C

(2n)2ne−2n
√

2neC
√

(2n)

=
eC

2
=

√
π

2

Note that

(2n)! = (2n)(2n)e−(2n)
√

(2n)eC

Therefore,

eC =
√

2π

Hence

lim
n→∞

n!

nne−n
√

2πn
= 1
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