
MATH 4317 Analysis I Fall 2012

Bakir, Loupos, Yan

Solutions to Homework 5

1. Ex. 19, pg 63

a) Let An = supk≥n ak, Bn = supk≥n bk, and Cn = supk≥n(ak + bk).

For k ≥ n, we have that ak ≤ An and bk ≤ Bn. Hence, we get that for k ≥ n:

ak + bk ≤ An + Bn

So, Cn = supk≥n(ak + bk) ≤ An + Bn. Thus,

lim sup
n→∞

(an + bn) = lim
n→∞

cn ≤ lim
n→∞

(An + Bn)

= lim
n→∞

An + lim
n→∞

Bn

= lim sup
n→∞

an + lim sup
n→∞

bn

b) Suppose an → a. Then,

lim sup
n→∞

(an + bn) ≤ a + lim sup
n→∞

bn (1)

Since lim supn→∞ bn is a cluster point of {bn}, there is a subsequence {bnk
}, so that

bnk
→ lim supn→∞ bn. Moreover, since an → a, we have that ank

→ a. Thus,

ank
+ bnk

→ a + lim sup
n→∞

bn

However, {ank
+ bnk

} is a subsequence of {an + bn}. So, the number on right-hand side
is a cluster point of {an + bn}. Thus, we must have:

a + lim sup
n→∞

bn ≤ lim sup
n→∞

(an + bn) (2)

By (1) and (2), we have that:

lim sup
n→∞

(an + bn) = a + lim sup
n→∞

bn = lim sup
n→∞

an + lim sup
n→∞

+bn

2. Ex. 19, pg 63

Let {ai} and {bi} be complex numbers.
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a) To prove that limn→∞(an + bn) = a + b, it suffices to notice property b) from exercise
18, namely that |z1 + z2| < |z1|+ |z2| for all complex numbers z1 and z2. Then, the proof
is similar to the one in page 48.

b) The proof is similar to the above. Just note that from property c) of exercise 18, we have
that |(−1)bn| = | − 1||bn| = |bn|, and then we can use property b) again, and follow the
same procedure as in page 48.

c) This follows an exact similar proof as in page 49, together with property c) of exercise
18.

d) Let bn = xn + iyn, b = x + iy. Since any convergent sequence is bounded, there exists a
positive number M ∈ R, such that |bn| < M and |b| < M , or equivalently

√
x2
n + y2n < M

and
√
x2 + y2 < M .

There exists a positive integer N2 such that for n2 > N2:

|b− bn| = |(x− xn) + i(y − yn)| =
√

(x− xn)2 + (y − yn)2 >
ε

M2

Whenever n > N , it is:

|1
b
− 1

bn
| = | x− iy

x2 + y2
− xn − iyn

x2
n + y2n

| =
√

(xn + yn)2 + (x + y)2√
(x2

n + y2n)(x2 + y2
<

M2ε

M2
= ε

Hence, limn→∞
1
bn

= 1
b , and using the result of part c), we get the desired result.

3. Ex. 27, pg 64

Since S is non-empty and bounded from above, l = l.u.b.S exists. But S has no greatest
element, so l /∈ S. For any ε > 0,

l − ε, l − ε

2
, l − ε

3
, .. are in S.

Then, there exists:

a1 ∈ S with |l − a1| < ε

a2 ∈ S with |l − a2| <
ε

2
...

This can be continued for infinitely many points an, that are less than ε distance away from
l. That is, for any ε > 0, there exists infinitely many points an ∈ S such that

|l − an| < ε for all n = 1, 2, 3, ..

Thus, any ball Bε(l) contains infinitely many points of S. Hence, we conclude that l = l.u.b.S
is a cluster point of S.

4. Ex. 29, pg 64

p is a cluster point =⇒ p is the limit point of a Cauchy sequence in S ∩ c{p}.
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There are infinitely many points of S in Bε(p) for all ε > 0. Take:

a1 ∈ Bε(p) ∩ S, a1 6= p

a2 ∈ B ε
2
(p) ∩ S, a2 6= p

...

p is the limit point of a Cauchy sequence in S ∩ c{p} =⇒ p is a cluster point.

Now, let the Cauchy sequence be p1, p2, p3, .. with pi ∈ S ∩ c{p} for i = 1, 2, 3, ... For any
ε > 0, there exists integer N , such that:

d(p, pn) < ε for all n > N

Hence, any Bε(p) contains an infinite number of points pi, such that pi ∈ S ∩ c{p}. Hence, p
is a cluster point of S.

5. Ex. 31, pg 64

{Ui}i∈I is an infinite open cover of [a, b].

Let S = {x ∈ [a, b] : x > a, and [a, x] is contained in the union of a finite number of sets Ui}.

Since x ∈ S implies x ∈ [a, b], lubS must be ≤ b. Thus, lubS ∈ S.

Since S is covered by open sets {Ui}i∈I , then lubS ∈ Ui for some i ∈ I.

Claim: lubS = b

Assume it is not true, that is lubS 6= b. Then, lubS = y, where y < b. By previous re-
sult, y ∈ Ui for some i ∈ I. Then, since Ui is open, there exists ε > 0 such that:

Bε(y) ⊂ Ui

Thus, y + ε
2 ∈ Ui, and therefore y + ε

2 ∈ S.

Hence, [a, y + ε
2 ] is also contained in a finite union of Ui’s.

So, y is not the lub, contradiction.

Thus, b is the lub, and b ∈ S. Therefore, [a, b] is contained in the union of a finite num-
ber of sets in {Ui}i∈I , proving that [a, b] is compact.

6. Ex. 34, pg 64

a) Let S, T be bounded. That is,

S ⊂ BRS
(x̄), T ⊂ BRT

(ȳ)
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. For all x ∈ S, d(x, x̄) < RS , and for all y ∈ T , d(y, ȳ) < RT .

Thus, for all (x1, .., xn, y1, .., ym) ∈ SXT , it is:

d ((x1, .., xn, y1, .., ym), (x̄1, .., x̄n, ȳ1, .., ȳm)) =

√√√√ n∑
i=1

(xi − x̄i)2 +

m∑
i=1

(yi − ȳi)2

≤

√√√√ n∑
i=1

(xi − x̄i)2 +

√√√√ m∑
i=1

(yi − ȳi)2

= d(x, x̄) + d(y, ȳ)

< RS + RT

Let R = RS + RT . For all (x, y) ∈ SXT , it is d ((x, y), (x̄, ȳ)) < R. Thus, SXT ⊂
BR(x̄, ȳ), meaning that SXT is bounded. Therefore,

SXT ⊂ BR(x̄1, .., x̄n, ȳ1, .., ȳm)

.

Then, for all (x, y) ∈ SXT , it is d ((x, y), (x̄, ȳ)) < R. Therefore,√√√√ n∑
i=1

(xi − x̄i)2 +

m∑
i=1

(yi − ȳi)2 < R

=⇒

√√√√ n∑
i=1

(xi − x̄i)2 < R and

√√√√ m∑
i=1

(yi − ȳi)2 < R

Hence, we get that d(x, x̄) < R for all x ∈ S, and d(y, ȳ) < R for all y ∈ T . Therefore,

S ⊂ BR(x̄) and T ⊂ BR(ȳ)

implying that S and T are bounded.

b) S, T are open, meaning that:

x ∈ S =⇒ There exists εS > 0 s.t. BεS (x) ⊂ S

y ∈ T =⇒ There exists εT > 0 s.t. BεT (y) ⊂ T

Then, for any (x, y) ∈ SXT , take ε = min{εS , εT }. We have that:

Bε(x, y) ⊂ SXT =⇒ SXT is open
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Now, let x ∈ S, and y ∈ T . SXT is open. Then, for any (x, y) ∈ SXT , there ex-
ists ε > 0 s.t. Bε(x, y) ⊂ SXT .

Take any (x′, y′) ∈ Bε(x, y). It is:

d ((x′, y′), (x, y)) =

√√√√ n∑
i=1

(x
′
i − xi)2 +

m∑
i=1

(y
′
i − yi)2 < ε

=⇒

√√√√ n∑
i=1

(x
′
i − xi)2 < ε and

√√√√ m∑
i=1

(y
′
i − yi)2 < ε

Therefore, x′ ∈ Bε(x), and y′ ∈ Bε(y), implying that S and T are open.

c) S, T are closed. This means, that any convergent sequences a1, a2, .. ∈ S, and b1, b2, .. ∈ T
have limits limi→∞ai = a ∈ S and limi→∞bi = b ∈ T, respectively. Now, take the
sequence (a1, b1), (a2, b2), .. ∈ SXT . It is:

limk→∞(ak, bk) = (a, b)

Since a ∈ S, b ∈ T , then (a, b) ∈ SXT , implying that SXT is closed.

Now, assume SXT is closed. Any convergent sequence (a1, b1), (a2, b2), .. ∈ SXT con-
verges to an element (a, b) ∈ SXT . Then, a1, a2, .. ∈ S converges to a ∈ S, and
b1, b2, .. ∈ T converges to b ∈ T , implying that S and T are closed.

d) S, T compact =⇒ S,T closed and bounded.
Therefore, SXT closed and bounded (by previous results of the problem, implying that
SXT is compact, since SXT ⊂ En+m.

SXT compact =⇒ SXT closed and bounded.
It is S, T closed and bounded (by previous results of this problem). Therefore, S and T
are compact, since S ⊂ En and T ⊂ Em.

7. Ex. 35, pg 65

Proving →.

Suppose every infinite subset has a cluster point. Consider the set of terms {p1, p2, ..} of
an arbitrary sequence. We have two possibilities:

1) The set {p1, p2, ..} is finite. In this case, at least one element p ∈ {p1, p2, ..} is repeated
infinetely many times in the sequence. Thus, p, p, p, .. is a convergent subsequence of {p1, p2, ..}.

2) The set {p1, p2, ..} is infinite. Then, it is an infinite subset of the metric space. Hence,
the set has a cluster point p. Since any ball with center p contains an infinite number of
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elements of the set, for any ε > 0, we can pick a pn1
from the set with d(pn1

, p) < ε, then a
pn2 from the set with d(pn2 , p) < ε/2, and so on. This way, we can construct a subsequence
pn1 , pn2 , .. that converges to p.

Therefore, every sequence has a convergent subsequence, implying that the metric space is
sequentially compact.

Proving ←.

Suppose a metric space is sequentially compact. Take any sequence {p1, p2, ..} in an infi-
nite subset of S of the metric space. Then, {p1, p2, ..} has a convergent subsequence pn1

, pn2
, ..

with limit p.

For any ε > 0, there exists N such that:

d(pnn , p) < ε for nn > N

Any Bε(p) contains infinitely many elements of the set S; hence, p is a cluster point of S. We
conclude, that every infinite subset of a sequentially compact metric space has a cluster point.
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