Analysis I

Bakir, Loupos, Yan

Solutions to Homework 5

- 1. Ex. 19, pg 63
 - a) Let $A_n = \sup_{k>n} a_k$, $B_n = \sup_{k>n} b_k$, and $C_n = \sup_{k>n} (a_k + b_k)$.

For $k \ge n$, we have that $a_k \le A_n$ and $b_k \le B_n$. Hence, we get that for $k \ge n$:

$$a_k + b_k \le A_n + B_n$$

So, $C_n = \sup_{k>n} (a_k + b_k) \le A_n + B_n$. Thus,

$$\limsup_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} c_n \le \lim_{n \to \infty} (A_n + B_n)$$
$$= \lim_{n \to \infty} A_n + \lim_{n \to \infty} B_n$$
$$= \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

b) Suppose $a_n \to a$. Then,

$$\limsup_{n \to \infty} (a_n + b_n) \le a + \limsup_{n \to \infty} b_n \tag{1}$$

Since $\limsup_{n\to\infty} b_n$ is a cluster point of $\{b_n\}$, there is a subsequence $\{b_{n_k}\}$, so that $b_{n_k} \to \limsup_{n\to\infty} b_n$. Moreover, since $a_n \to a$, we have that $a_{n_k} \to a$. Thus,

$$a_{n_k} + b_{n_k} \to a + \limsup_{n \to \infty} b_n$$

However, $\{a_{n_k} + b_{n_k}\}$ is a subsequence of $\{a_n + b_n\}$. So, the number on right-hand side is a cluster point of $\{a_n + b_n\}$. Thus, we must have:

$$a + \limsup_{n \to \infty} b_n \le \limsup_{n \to \infty} (a_n + b_n) \tag{2}$$

By (1) and (2), we have that:

$$\limsup_{n \to \infty} (a_n + b_n) = a + \limsup_{n \to \infty} b_n = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

2. Ex. 19, pg 63

Let $\{a_i\}$ and $\{b_i\}$ be complex numbers.

- a) To prove that $\lim_{n\to\infty} (a_n + b_n) = a + b$, it suffices to notice property b) from exercise 18, namely that $|z_1 + z_2| < |z_1| + |z_2|$ for all complex numbers z_1 and z_2 . Then, the proof is similar to the one in page 48.
- b) The proof is similar to the above. Just note that from property c) of exercise 18, we have that $|(-1)b_n| = |-1||b_n| = |b_n|$, and then we can use property b) again, and follow the same procedure as in page 48.
- c) This follows an exact similar proof as in page 49, together with property c) of exercise 18.
- d) Let $b_n = x_n + iy_n$, b = x + iy. Since any convergent sequence is bounded, there exists a positive number $M \in R$, such that $|b_n| < M$ and |b| < M, or equivalently $\sqrt{x_n^2 + y_n^2} < M$ and $\sqrt{x^2 + y^2} < M$.

There exists a positive integer N_2 such that for $n_2 > N_2$:

$$|b - b_n| = |(x - x_n) + i(y - y_n)| = \sqrt{(x - x_n)^2 + (y - y_n)^2} > \frac{\varepsilon}{M^2}$$

Whenever n > N, it is:

$$|\frac{1}{b} - \frac{1}{b_n}| = |\frac{x - iy}{x^2 + y^2} - \frac{x_n - iy_n}{x_n^2 + y_n^2}| = \frac{\sqrt{(x_n + y_n)^2 + (x + y)^2}}{\sqrt{(x_n^2 + y_n^2)(x^2 + y^2)}} < \frac{M^2\varepsilon}{M^2} = \varepsilon$$

Hence, $\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{b}$, and using the result of part c), we get the desired result.

3. Ex. 27, pg 64

Since S is non-empty and bounded from above, l = l.u.b.S exists. But S has no greatest element, so $l \notin S$. For any $\varepsilon > 0$,

$$l-\varepsilon, l-\frac{\varepsilon}{2}, l-\frac{\varepsilon}{3}, \dots$$
 are in S.

Then, there exists:

$$a_1 \in S$$
 with $|l - a_1| < \varepsilon$
 $a_2 \in S$ with $|l - a_2| < \frac{\varepsilon}{2}$
...

This can be continued for infinitely many points a_n , that are less than ε distance away from l. That is, for any $\varepsilon > 0$, there exists infinitely many points $a_n \in S$ such that

$$|l-a_n| < \varepsilon$$
 for all $n = 1, 2, 3, .$

Thus, any ball $B_{\varepsilon}(l)$ contains infinitely many points of S. Hence, we conclude that l = l.u.b.S is a cluster point of S.

4. Ex. 29, pg 64

p is a cluster point \implies p is the limit point of a Cauchy sequence in $S \cap c\{p\}$.

There are infinitely many points of S in $B_{\varepsilon}(p)$ for all $\varepsilon > 0$. Take:

$$\begin{aligned} a_1 \in B_{\varepsilon}(p) \cap S, a_1 \neq p \\ a_2 \in B_{\frac{\varepsilon}{2}}(p) \cap S, a_2 \neq p \\ \dots \end{aligned}$$

p is the limit point of a Cauchy sequence in $S \cap c\{p\} \Longrightarrow p$ is a cluster point.

Now, let the Cauchy sequence be $p_1, p_2, p_3, ...$ with $p_i \in S \cap c\{p\}$ for i = 1, 2, 3, ... For any $\varepsilon > 0$, there exists integer N, such that:

$$d(p, p_n) < \varepsilon$$
 for all $n > N$

Hence, any $B_{\varepsilon}(p)$ contains an infinite number of points p_i , such that $p_i \in S \cap c\{p\}$. Hence, p is a cluster point of S.

5. Ex. 31, pg 64

 $\{U_i\}_{i \in I}$ is an infinite open cover of [a, b].

Let $S = \{x \in [a, b] : x > a, \text{ and } [a, x] \text{ is contained in the union of a finite number of sets } U_i\}$.

Since $x \in S$ implies $x \in [a, b]$, lubS must be $\leq b$. Thus, $lubS \in S$.

Since S is covered by open sets $\{U_i\}_{i \in I}$, then $lubS \in U_i$ for some $i \in I$.

Claim: lubS = b

Assume it is not true, that is $lubS \neq b$. Then, lubS = y, where y < b. By previous result, $y \in U_i$ for some $i \in I$. Then, since U_i is open, there exists $\varepsilon > 0$ such that:

$$B_{\varepsilon}(y) \subset U_i$$

Thus, $y + \frac{\varepsilon}{2} \in U_i$, and therefore $y + \frac{\varepsilon}{2} \in S$.

Hence, $[a, y + \frac{\varepsilon}{2}]$ is also contained in a finite union of U_i 's.

So, y is not the lub, contradiction.

Thus, b is the lub, and $b \in S$. Therefore, [a, b] is contained in the union of a finite number of sets in $\{U_i\}_{i \in I}$, proving that [a, b] is compact.

6. Ex. 34, pg 64

a) Let S, T be bounded. That is,

$$S \subset B_{R_S}(\bar{x}), T \subset B_{R_T}(\bar{y})$$

. For all $x \in S$, $d(x, \bar{x}) < R_S$, and for all $y \in T$, $d(y, \bar{y}) < R_T$.

Thus, for all $(x_1, ..., x_n, y_1, ..., y_m) \in SXT$, it is:

$$d\left((x_1, .., x_n, y_1, .., y_m), (\bar{x_1}, .., \bar{x_n}, \bar{y_1}, .., \bar{y_m})\right) = \sqrt{\sum_{i=1}^n (x_i - \bar{x_i})^2 + \sum_{i=1}^m (y_i - \bar{y_i})^2}$$
$$\leq \sqrt{\sum_{i=1}^n (x_i - \bar{x_i})^2} + \sqrt{\sum_{i=1}^m (y_i - \bar{y_i})^2}$$
$$= d(x, \bar{x}) + d(y, \bar{y})$$
$$< R_S + R_T$$

Let $R = R_S + R_T$. For all $(x, y) \in SXT$, it is $d((x, y), (\bar{x}, \bar{y})) < R$. Thus, $SXT \subset B_R(\bar{x}, \bar{y})$, meaning that SXT is bounded. Therefore,

$$SXT \subset B_R(\bar{x_1},..,\bar{x_n},\bar{y_1},..,\bar{y_m})$$

Then, for all $(x, y) \in SXT$, it is $d((x, y), (\bar{x}, \bar{y})) < R$. Therefore,

$$\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2} + \sum_{i=1}^{m} (y_i - \bar{y}_i)^2 < R$$

$$\implies \sqrt{\sum_{i=1}^{n} (x_i - \bar{x_i})^2} < R \text{ and } \sqrt{\sum_{i=1}^{m} (y_i - \bar{y_i})^2} < R$$

Hence, we get that $d(x, \bar{x}) < R$ for all $x \in S$, and $d(y, \bar{y}) < R$ for all $y \in T$. Therefore,

$$S \subset B_R(\bar{x})$$
 and $T \subset B_R(\bar{y})$

implying that S and T are bounded.

b) S, T are open, meaning that:

.

$$\begin{array}{l} x \in S \implies \text{ There exists } \varepsilon_S > 0 \text{ s.t. } B_{\varepsilon_S}(x) \subset S \\ y \in T \implies \text{ There exists } \varepsilon_T > 0 \text{ s.t. } B_{\varepsilon_T}(y) \subset T \end{array}$$

Then, for any $(x, y) \in SXT$, take $\varepsilon = \min\{\varepsilon_S, \varepsilon_T\}$. We have that:

$$B_{\varepsilon}(x,y) \subset SXT \Longrightarrow SXT$$
 is open

Now, let $x \in S$, and $y \in T$. SXT is open. Then, for any $(x, y) \in SXT$, there exists $\varepsilon > 0$ s.t. $B_{\varepsilon}(x, y) \subset SXT$.

Take any $(x', y') \in B_{\varepsilon}(x, y)$. It is:

$$d((x',y'),(x,y)) = \sqrt{\sum_{i=1}^{n} (x'_i - x_i)^2 + \sum_{i=1}^{m} (y'_i - y_i)^2} < \varepsilon$$
$$\implies \sqrt{\sum_{i=1}^{n} (x'_i - x_i)^2} < \varepsilon \text{ and } \sqrt{\sum_{i=1}^{m} (y'_i - y_i)^2} < \varepsilon$$

Therefore, $x' \in B_{\varepsilon}(x)$, and $y' \in B_{\varepsilon}(y)$, implying that S and T are open.

c) S, T are closed. This means, that any convergent sequences $a_1, a_2, ... \in S$, and $b_1, b_2, ... \in T$ have limits $\lim_{i\to\infty} a_i = a \in S$ and $\lim_{i\to\infty} b_i = b \in T$, respectively. Now, take the sequence $(a_1, b_1), (a_2, b_2), ... \in SXT$. It is:

$$\lim_{k \to \infty} (a_k, b_k) = (a, b)$$

Since $a \in S, b \in T$, then $(a, b) \in SXT$, implying that SXT is closed.

Now, assume SXT is closed. Any convergent sequence $(a_1, b_1), (a_2, b_2), ... \in SXT$ converges to an element $(a, b) \in SXT$. Then, $a_1, a_2, ... \in S$ converges to $a \in S$, and $b_1, b_2, ... \in T$ converges to $b \in T$, implying that S and T are closed.

d) S, T compact \implies S,T closed and bounded. Therefore, SXT closed and bounded (by previous results of the problem, implying that SXT is compact, since $SXT \subset E^{n+m}$.

SXT compact $\implies SXT$ closed and bounded. It is S, T closed and bounded (by previous results of this problem). Therefore, S and T are compact, since $S \subset E^n$ and $T \subset E^m$.

7. Ex. 35, pg 65

Proving \rightarrow .

Suppose every infinite subset has a cluster point. Consider the set of terms $\{p_1, p_2, ..\}$ of an arbitrary sequence. We have two possibilities:

1) The set $\{p_1, p_2, ..\}$ is finite. In this case, at least one element $p \in \{p_1, p_2, ..\}$ is repeated infinitely many times in the sequence. Thus, p, p, p, .. is a convergent subsequence of $\{p_1, p_2, ..\}$.

2) The set $\{p_1, p_2, ..\}$ is infinite. Then, it is an infinite subset of the metric space. Hence, the set has a cluster point p. Since any ball with center p contains an infinite number of

elements of the set, for any $\varepsilon > 0$, we can pick a p_{n_1} from the set with $d(p_{n_1}, p) < \varepsilon$, then a p_{n_2} from the set with $d(p_{n_2}, p) < \varepsilon/2$, and so on. This way, we can construct a subsequence p_{n_1}, p_{n_2}, \ldots that converges to p.

Therefore, every sequence has a convergent subsequence, implying that the metric space is sequentially compact.

Proving \leftarrow .

Suppose a metric space is sequentially compact. Take any sequence $\{p_1, p_2, ..\}$ in an infinite subset of S of the metric space. Then, $\{p_1, p_2, ..\}$ has a convergent subsequence $p_{n_1}, p_{n_2}, ..$ with limit p.

For any $\varepsilon > 0$, there exists N such that:

$$d(p_{n_n}, p) < \varepsilon \text{ for } n_n > N$$

Any $B_{\varepsilon}(p)$ contains infinitely many elements of the set S; hence, p is a cluster point of S. We conclude, that every infinite subset of a sequentially compact metric space has a cluster point.