
CH. 8 HOMEWORK

STEVEN BRADSHAW, LISA HICKS, STEPHANIE PARKER

(1) Problem 1

Discuss the continuity of the function f : R→ R if

(b) f(x) =

{
xsin( 1

x
) for x 6= 0
0 for x = 0

Proof. We wish to show f is continuous at all x. First we will show f is continuous
at x = 0. Let ε > 0 be given. Consider,

|f(x)− f(0)| =
∣∣∣∣xsin(1

x

)
− 0

∣∣∣∣ =

∣∣∣∣xsin(1

x

)∣∣∣∣ = |x|
∣∣∣∣sin(1

x

)∣∣∣∣ ≤ |x| < x.

If we let ε = δ, then it follows that when |x − 0| < δ, we have |f(x) − f(0)| < ε.
Therefore f is continuous at x = 0.

Now we wish to show f is continuous when x 6= 0. Consider,

|f(x)− f(xo)| =
∣∣∣∣xsin(1

x

)
− xosin

(
1

xo

)∣∣∣∣
=

∣∣∣∣xsin(1

x

)
− xsin

(
1

xo

)
+ xsin

(
1

xo

)
− xosin

(
1

xo

)∣∣∣∣
=

∣∣∣∣x(sin(1

x

)
− sin

(
1

xo

))
+ sin

(
1

xo

)
(x− xo)

∣∣∣∣
≤

∣∣∣∣x(sin(1

x

)
− sin

(
1

xo

))∣∣∣∣ +

∣∣∣∣sin( 1

xo

)
(x− xo)

∣∣∣∣
< |x|

∣∣∣∣sin(1

x

)
− sin

(
1

xo

)∣∣∣∣ +

∣∣∣∣sin( 1

xo

)∣∣∣∣ |x− xo|.
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Since
∣∣sin ( 1

x

)∣∣ ≤ 1, we know that
∣∣∣sin ( 1

x

)
− sin

(
1
xo

)∣∣∣ ≤ 1. Then it follows that,

|f(x)− f(xo)| < |x|
∣∣∣∣sin(1

x

)
− sin

(
1

xo

)∣∣∣∣ +

∣∣∣∣sin( 1

xo

)∣∣∣∣ |x− xo|
< |x|+ |x− xo|

Let ε > |x|+ δ, then when |x− xo| < δ, it follows that |f(x)− f(xo)| < ε. Therefore
f is continuous at x 6= 0. �

(c) f(x) =

{
x2 for x 6= 0
1 for x = 0

Proof. Let xn = 1
n
, limn→∞ xn = limn→∞

1
n

= 0

limn→∞ f(xn) = limn→∞( 1
n
)2

= limn→∞
1
n2 = 0 6= f(0) = 1

Thus f(x) is not continuous by proposition on page 74.
Another way to prove that f(x) is discontinuous at x = 0 is again fairly straightfor-

ward. Similar to example one on page 69, we see that all we need to show is that for
any ε > 0 we can not find a δ > 0, such that |f(x)− f(0)| < ε, whenever |x− 0| < δ.

|x2 − 12| = |(x+ 1)(x− 1)|
= |(x− 1 + 1 + 1)(x− 1)|
< (|x− 1|+ |2|)|x− 1|

Notice for |f(x) − f(0)| < ε we would have to have |x − 1| < δ, but we also need
|x − 0| < δ. Which is a contradiction, hence f is not continuous at x = 0 and is
therefore discontinuous. �

(2) Problem 14

(a) Prove the if S is a nonempty compact subset of a metric space E and po ∈ E
then min{d(po, p) : p ∈ S} exists. (”distance from po to S”)

Proof. Let S be a nonempty compact subset of E, and po ∈ E. Let f : S → R
where f(p) = d(po, p). We wish to show f is continuous, since continuous real
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valued functions on nonempty compact metric space attain a minimum value.
Consider p1 ∈ S and ε > 0 given,

|f(p)− f(p1)| = |d(po, p)− d(po, p1)| = |d(p, po)− d(po, p1)| ≤ d(p, p1).

If you let d(p, p1) < ε, then it follows that |f(p)− f(p1)| < ε. So let δ = ε. Then
we can conclude that f is continuous. Hence we can say f attains a min at some
point, which means min{d(po, p) : p ∈ S} exists. �

(b) Prove that if S is a nonempty closed subset of En and po ∈ En then min{d(po, p) :
p ∈ S} exists.

Proof. Let E, E ′ be metric spaces, and f : E → E ′ be a continuous, one-to-one,
and onto function. We wish to show f−1 : E ′ → E is continuous by showing that
for every closed set A ∈ E, f(A) ∈ E ′ is closed. Assume we have a convergent
subsequence qn ∈ f(A) We have that f(A) ∈ E ′ From one to one and onto
we know that ∃pn : f(pn) = qn, pn ∈ A. Since limn→∞ qn = qo we know that
∃po ∈ E, since we have one to one and ontof(po) = qo. Thus f(pn) = qn →
qo = f(po).f(po) = qo. So we know that limn→∞ pn − po since A is closed. po ∈
Aspf(po) = qo) ∈ f(A) therefore f(A) is closed. Thus we have that closed sets
map to closed sets and if we take the compliments, we see that open sets map to
open sets. We can now conclude that f−1 : E ′ → E is continuous �

(3) Problem 15

Prove that for any nonempty compact metric space E, max{d(p, q) : p, q ∈ E} ex-
ists (”diameter of E”). (Hint: Start with a sequence of pairs of points (pn, qn)n=1,2,3,...

of E such that limn→+∞ d(pn, qn) = l.u.b.{d(p, q) : p, q ∈ E} and pass to convergent
subsequences)

Proof. Suppose there is a sequence of points (pn, qn)n=1,2,3,... ⊂ E such that

lim
n→∞

d(pn, qn) = L.U.B{d(p, q) : p, q ∈ E}.

Since E is compact, which implies E is bounded, we can say (pn, qn)n=1,2,3,... is also
bounded. Another property of compactness allows us to state that there exists sub-
sequences in E that also converge in E, i.e. (pnk

)→ po, (qnk
)→ qo as k →∞, where

po, qo ∈ E. This implies that limk→∞ d(pnk
, qnk

) = d(po, qo). Since limits are unique
and a sequence that converges also has subsequences that converge to the same limit,
we can say

lim
k→∞

d(pnk
, qnk

) = lim
n→∞

d(pn, qn) = L.U.B.{d(p, q) : p, q ∈ E}.

Since (pn, qn) is bounded, we know the L.U.B. is contained in the set {d(p, q) : p, q ∈
E}, which means the set has a maximum. Hence max {d(p, q) : p, q ∈ E} exists. �

(4) Problem 16

Let E,E
′

be metric spaces, f : E → E
′

is a continuous function. Prove that if E
is compact and f is one-one onto then f−1 :: E → E

′
is continuous. (Hint: f sends

closed sets onto closed sets, therefore open sets onto open sets.)
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Proof. Let E, E ′ be metric spaces, and f : E → E ′ be a continuous, one-to-one, and
onto function. We wish to show f−1 : E ′ → E is continuous by showing that for
every open set U ∈ E, f(U) ∈ E ′ is open. Since f is continuous we know every open
set U ∈ E ′ maps to an open set f−1(U) ∈ E. Also, since UC is closed, we can say
f−1(UC) = (f−1(U))C is also closed. Hence open sets map to open sets, and closed
sets map to closed sets. We know that since f is a one-to-one and onto function we
can say every open (or closed) set f(U) ∈ E ′ maps to an open (or closed) set U ∈ E.
Hence f−1 is continuous. �

Alternative proof for Problem 16

Proof. Let E, E ′ be metric spaces, and f : E → E ′ be a continuous, one-to-one, and
onto function. We wish to show f−1 : E ′ → E is continuous by showing that for every
closed set A ∈ E, f(A) ∈ E ′ is closed. Assume we have a convergent subsequence
qn ∈ f(A) ⊂ E ′. Since f is one to one and onto we know that there exits a sequence
pn ∈ A such that f(pn) = qn, where qn ∈ f(A). Let limn→∞ qn = qo, then we know
that there exists po ∈ E such that f(po) = qo, sincef is one to one and onto. Thus
f(pn) = qn implies that f(po) = qo Since A is closed, we know that limn→∞ pn = po,
and po ∈ A. Hence f(po) = qo ∈ f(A), and therefore f(A) is closed. Thus we have
that closed sets map to closed sets and if we take the compliments, we see that open
sets map to open sets. We can now conclude that f−1 : E ′ → E is continuous �
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