Final Exam for Anaysis I, Math 4317, December 13, 2010, Allowed time is 2 hours and 50 minutes. This is a closed book test but a cheat sheet is allowed. Always state your reasoning otherwise credit will not be given. Try to be as concise and to the point as possible.

Name:

1: Consider the real line \mathbb{R} with the metric $d(x, y) := |x - y|, x, y \in \mathbb{R}$ and consider the subsets of \mathbb{R}

$$A = (1,2)$$
, $B = [1,2) \cup \{3\}$, $C = [1,2]$.

(4 points, no partial credit) Which ones are closed in \mathbb{R} ?

(4 points, no partial credit) Which ones are open open in \mathbb{R} ?

(4 points, no partial credit) Which ones are compact?

2: Consider the metric space $E = \{x \in \mathbb{R} : -1 < x < 1\}$ with the metric $d(x, y) = |x - y|, x, y \in \mathbb{R}$ and the subsets

$$A = (-1,0)$$
, $B = (-1,0]$, $C = [-1/2, 1/2]$.

(4 points, no partial credit) Which ones are closed in E?

(4 points, no partial credit) Which ones are open open in E?

(4 points, no partial credit) Which ones are compact?

3: (16 points) Let p_1, p_2, p_3, \ldots be a sequence of points in a metric space E that converges to $p \in E$. Prove that the set $\{p, p_1, p_2, p_3, \ldots\}$ is closed.

4: (12 points) Prove or disprove by finding a counterexample the following statement: If E is a metric space and $f: E \to E$ a continuous function then f(S) is open for any open set $S \subset E$.

5: (12 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded and continuous function. Show that the function

$$F(x) = \int_0^x f(t)dt$$

a uniformly continuous function on \mathbb{R} .

6: (16 points) Show, by directly using the definition of the logarithm, that

$$\lim_{x \to 0} x^{\varepsilon} \log(x) = 0$$

for every $\varepsilon > 0$.

7: (20 points) Compute

$$\lim_{n \to \infty} \frac{1 + 2^k + 3^k + \cdots + n^k}{n^{k+1}} \, .$$

Here $k \in \mathbb{R}$ is a positive number.

8: Let C be a compact subset of \mathbb{R} . A function $f: C \to \mathbb{R}$ is upper semicontinuous if and only if for all $t \in \mathbb{R}$ the set $\{x \in C : f(x) \ge t\}$ is closed.

a) (5 points) Prove that any continuous function $f: C \to \mathbb{R}$ is upper semicontinuous.

b) (10 points) Prove that an upper semicontinuous function $f: C \to \mathbb{R}$ is bounded.

c) **Extra credit:** (15 points) Prove that an upper semicontinuous function $f : C \to \mathbb{R}$ attains its maximum value in the set C.

Extra Credit: (30 points) Prove that the series

$$\sum_{n,m=1}^{\infty} \frac{1}{(n+m)!}$$

converges and determine its value.