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1 Integration of functions

In the following we consider the closed interval [a, b] ⊂ R and f a real valued, bounded

function defined on [a, b]. Our goal is to give a definition of the Riemann integral and derive

the fundamental theorem of calculus. I follow the great problem book of Polyá and Szgö

“Aufgaben und Lehrsätze aus der Analysis I”. I am sure that this book has been translated

into English.

1.1 Partitions, upper sums and lower sums

Apartition P of the interval [a, b] is a collection of distinct points in

a = x0 < x1 < · · ·xn−1 < xn = b .

Given two partitions P and Q we define the refinement of P and Q to be

P ∪Q .

The upper sum

Uf (P) =
n∑

j=1

sup
xj−1≤x≤xj

f(x)(xj − xj−1)

and the lower sum

Lf (P) =
n∑

j=1

inf
xj−1≤x≤xj

f(x)(xj − xj−1) .

Recall that

sup
xj−1≤x≤xj

f(x) = l.u.b.{f(x) : xj−1 ≤ x ≤ xj}

and likewise

inf
xj−1≤x≤xj

f(x) = g.l.b.{f(x) : xj−1 ≤ x ≤ xj} .

We have, obviously that

Uf (P) ≥ Lf (P)

and both sums are finite since the function is bounded.

1.1 LEMMA. Let P ⊂ Q, i.e., Q is a refinement of P. Then

Uf (Q) ≤ Uf (P)

and

Lf (Q) ≥ Lf (P) .
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Proof. Take two successive points xj > xj−1 ∈ P for which there exists one or more points

y1, · · · , yk in Q such that

xj−1 < y1 < y2 · · · < yk < xj

Such a situation must exist since Q is a refinement of P . Otherwise P = Q and there is

nothing to prove.

Now,

sup
xj−1≤x≤xj

f(x) ≥ max{ sup
xj−1≤x≤y1

f(x), sup
y1≤x≤y2

f(x), . . . , sup
yk≤x≤xj

f(x)}

and hence

sup
xj−1≤x≤xj

f(x)(xj − xj−1)

≥ sup
xj−1≤x≤y1

f(x)(y1 − xj−1) + sup
y1≤x≤y2

f(x)(y2 − y1) + · · ·+ sup
yk≤x≤xj

f(x)(xj − yk) .

This inequality proves that the first inequality of the lemma. The other follows in a similar

fashion.

1.2 COROLLARY. Let P and Q be any two partitions. Then

Uf (P) ≥ Lf (Q) . (1.1)

In particular

Uf = g.l.b{Uf (P) : P is a partition}

and

Lf = l.u.b{Lf (P) : P is a partition} ,

and

Uf ≥ Lf .

We call the numbers Uf , Lf the upper respectively, lower limit.

Proof. Take the union P ∪ Q which is a refinement of both, P and Q. By Lemma 1.1 we

have that

Uf (P) ≥ Uf (P ∪Q) ≥ Lf (P ∪Q) ≥ Lf (Q) .

The set {Lf (P) : P is a partition} is bounded above and the set {Uf (P) : P is a partition}
is bounded below and therefore Uf and Lf are defined. To see that Uf ≥ Lf we assume on

the contrary that Uf < Lf . This means that there is some ε > 0 so that Lf > Uf + ε. By

the definition of Lf we can find a partition P so that Lf (P) > Lf − ε/2 and a partition Q
with Uf (Q) < Uf + ε/2. This means that Lf (P) > Uf + ε/2 > Uf (Q), a contradiction to

(1.1)
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1.3 DEFINITION. A function f : [a, b]→ R is integrable in the sense of Riemann, if it

is bounded and if the upper limit equals the lower limit, i.e.,

Uf = Lf ,

and we denote this number by ∫ b

a

f(x)dx .

1.4 Remark. Thus, in order to decide whether a function is integrable we have to find a

sequence of partitions Pn such that Uf (Pn)− Lf (Pn) converges towards zero. Since

0 ≤ Uf (Pn)− Uf ≤ Uf (Pn)− Lf (Pn)

and since

0 ≤ Lf − Lf (Pn) ≤ Uf (Pn)− Lf (Pn)

we learn that Uf (Pn) converges to Uf and Lf (Pn) converges to Lf . Thus Uf = Lf and the

function is integrable. There is of course great flexibility in finding such partitions.

1.2 Continuous functions and monotone functions are integrable

1.5 THEOREM. Any bounded monotone function on the interval [a, b] is integrable.

Proof. We may assume that the function is monotone increasing. The proof for monotone

decreasing functions follows by considering −f . All we have to do is to exhibit a sequence

of partitions Pn so that Uf (Pn)− Lf (Pn) ≥ 0 converges to zero. Pick

Pn = {a+
k

n
(b− a) : k = 1, . . . n} .

Observe that

Uf (Pn)− Lf (Pn) =
n∑

j=1

[
sup

xj−1≤x≤xj

f(x)− inf
xj−1≤x≤xj

f(x)

]
b− a
n

which equals
n∑

j=1

[f(xj)− f(xj−1)]
b− a
n

=
(f(b)− f(a))(b− a)

n

which tends to zero as n→∞.

For the next theorem the notion of width of a partition P which is defined as

max{xj − xj−1 : 1 ≤ j < n}

is useful.
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1.6 THEOREM. Any continuous function on the interval [a, b] is integrable.

Proof. Every continuous functions on a closed interval is uniformly continuous. Pick ε > 0.

There exists δ > such that for all x, y ∈ [a, b] with |x− y| < δ we have that

|f(x)− f(y)| < ε

b− a

Pick any partition P of width less than δ, e.g., the one before with

b− a
n

< δ .

Then

0 ≤ Uf (P)− Lf (P) =
n∑

j=1

[
sup

xj−1≤x≤xj

f(x)− inf
xj−1≤x≤xj

f(x)

]
(xj − xj−1) .

Further, since f is uniformly continuous on [a, b] it is bounded and

sup
xj−1≤x≤xj

f(x) = f(x′)

for some xj−1 ≤ x′ ≤ xj. Likewise

inf
xj−1≤x≤xj

f(x) = f(y′)

for some xj−1 ≤ y′ ≤ xj. Since the width of the partition is less than δ we also have that

|x′ − y′| < δ and hence

0 ≤

[
sup

xj−1≤x≤xj

f(x)− inf
xj−1≤x≤xj

]
f(x) = f(x′)− f(y′) <

ε

b− a
.

Thus

0 ≤ Uf (P)− Lf (P) <
n∑

j=1

(xj − xj−1)
ε

b− a
= ε

Since ε is arbitrary, we have that Uf = Lf .

1.3 Some examples

Example 1: Consider the function f(x) on [0, 1] defined by

f(x) =

1 if x is rational

0 if x is irrational
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Pick any partition P . Then

Uf (P) =
n∑

j=1

sup
xj−1≤x≤xj

f(x)(xj − xj−1) =
n∑

j=1

(xj − xj−1) = 1

since every interval [xj−1, xj] contains rational numbers. Likewise

Lf (P) = 0

since every interval [xj−1, xj] contains irrational numbers. Thus the upper limit Uf = 1 and

the lower limit Lf = 0. This function is not integrable.

Example 2: Consider the functions 1
x2 on the interval [a, b] with a > 0. Let P is any

partition note that on the interval [xj−1, xj] we have sup 1
x2 = 1

x2
j−1

and inf 1
x2 = 1

x2
j
. Now

1

xj−1

− 1

xj

=
xj − xj−1

xjxj−1

and
1

x2
j

(xj − xj−1) ≤
xj − xj−1

xjxj−1

≤ 1

x2
j−1

(xj − xj−1)

we find that

Lf (P) ≤
n∑

j=1

(
1

xj−1

− 1

xj

)
≤ Uf (P) .

But
n∑

j=1

(
1

xj−1

− 1

xj

)
=

1

a
− 1

b

independent of the partition. Since 1
x2 is integrable on [a, b] we find that∫ b

a

1

x2
dx =

1

a
− 1

b
.

Example 3: The function xn, n ∈ N, being continuous, is integrable on the interval

[a, b]. We assume that a > 0. Once more choosing a partition we concentrate on the interval

[xj−1, xj] and note that

(xn+1
j − xn+1

j−1 ) = (xj − xj−1)
n∑

k=0

xk
jx

n−k
j−1 .

Since xj > xj−1 we have that

(n+ 1)xn+1
j−1 <

n∑
k=0

xk
jx

n−k
j−1 < (n+ 1)xn+1

j .
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Hence, as before

Lf (P) ≤
∑n

j=1(x
n+1
j − xn+1

j−1 )

n+ 1
≤ Uf (P)

and once more we have a telescoping sum and obtain that for all partitions P

Lf (P) ≤ bn+1 − an+1

n+ 1
≤ Uf (P) .

Hence ∫ b

a

xndx =
bn+1 − an+1

n+ 1
.

An interesting example is given by the function f(x) = 1
x

on [a, b], where a > 0. Once

more, this function is integrable and we try to compute the integral. Choose the sequence

of partitions

Pn = {a
(
b

a

) k
n

: k = 0, 1, . . . , n}

Now, compute

Uf (Pn) =
n∑

j=1

1

a
(

b
a

) j−1
n

(a

(
b

a

) j
n

− a
(
b

a

) j−1
n

) = n(

(
b

a

) 1
n

− 1)

and

L(Pn) =
n∑

j=1

1

a
(

b
a

) j
n

(a

(
b

a

) j
n

− a
(
b

a

) j−1
n

) = n(1−
(a
b

) 1
n
)

Recall that

Uf (Pn) ≥ Uf ≥ Lf ≥ Lf (Pn) .

Although we did not talk yet about the logarithm, it is easy to see that

lim
n→∞

n(

(
b

a

) 1
n

− 1) = lim
n→∞

= n(1−
(a
b

) 1
n
) = log(

b

a
) .

Hence ∫ b

a

1

x
dx = log(

b

a
) .

1.4 Linearity of the integral and Inequalities for integrals

1.7 THEOREM. Let f and g be two integrable functions on the interval [a, b]. The f + g

is also integrable and ∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx .
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Likewise, if c ∈ R is any constant the cf(x) is integrable and∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx .

Proof. Pick any ε and choose partitions P and Q such that∫ b

a

f(x)dx− ε/2 < Lf (P) ≤ Uf (P) <

∫ b

a

f(x)dx+ ε/2

and ∫ b

a

g(x)dx− ε/2 < Lg(Q) ≤ Ug(Q) <

∫ b

a

g(x)dx+ ε/2

Taking the refinement of the two partitions R = P ∪Q we know that

Lf+g(R) ≥ Lf (R) + Lg(R) ,

which follows from the fact that

inf
S

(f(x) + g(x)) ≥ inf
S
f(x) + inf

S
g(x) .

Since

Lf (R) + Lg(R) ≥ Lf (P) + Lg(Q)

we have that

Lf+g(R) >

∫ b

a

f(x)dx+

∫ b

a

g(x)dx− ε .

Similarly,

Uf+g(R) ≤ Uf (R) + Ug(R)

since

sup
S

(f(x) + g(x)) ≤ sup
S
f(x) + sup

S
g(x) .

Hence we have that

Uf+g(R) ≤ Uf (P) + Ug(Q) <

∫ b

a

f(x)dx+

∫ b

a

g(x)dx+ ε .

Thus∫ b

a

f(x)dx+

∫ b

a

g(x)dx− ε < Lf+g(R) ≤ Uf+g(R) <

∫ b

a

f(x)dx+

∫ b

a

g(x)dx+ ε ,

which proves the additivity of the integral. The proof of the other statement is easy and is

left as an excercise.

Here is a little lemma concerning real functions defined on a set S ⊂ R.
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1.8 LEMMA. Let f be a real valued function on a set S ⊂ R. Then

sup
S
f(x)− inf

S
f(x) ≥ sup

S
|f(x)| − inf

S
|f(x)| .

Proof. We distinguish three cases.

a) f(x) ≥ 0 for all x ∈ S. In this case, we have that f(x) = |f(x)| and the inequality is an

equality.

b) f(x) ≤ 0 for all x ∈ S. In this case

sup
S
f(x) = − inf

S
(−f(x)) = − inf

S
|f(x)| .

Likewise

inf
S
f(x) = − sup

S
(−f(x)) = − sup

S
|f(x)|

and we have that

sup
S
f(x)− inf

S
f(x) = − inf

S
|f(x)|+ sup

S
|f(x)|

and once more there is equality.

The interesting case is

c) f(x) changes sign on S. Clearly

sup f(x) = sup{f(x) : x ∈ S, f(x) > 0}

and

inf f(x) = inf{f(x) : x ∈ S, f(x) < 0} ,

or

inf f(x) = − sup{−f(x) : x ∈ S,−f(x) > 0}

But,

sup{f(x) : x ∈ S, f(x) > 0}+ sup{−f(x) : x ∈ S,−f(x) > 0} = sup
S
|f(x)|

since the sets where f(x) > 0 and the set where f(x) < 0 are disjoint. Hence

sup
S
f(x)− inf

S
f(x) = sup

S
|f(x)| ≥ sup

S
|f(x)| − inf

S
|f(x)| .

and we are done.
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1.9 THEOREM. Let f be an integrable function on [a, b]. Then its absolute value |f | as

well as its positive part defined by f+(x) = max{f(x), 0} and its negative part defined by

f−(x) = max{−f(x), 0} are integrable.

Proof. Consider the upper sum Uf (P) and the lower sum Lf (P) for the function f(x), where

P is a partition. Since

Uf (P)− Lf (P) =
n∑

j=1

[
sup

xj−1≤x<xj

f(x)− inf
xj−1≤x<xj

f(x)

]
(xj − xj−1) .

Bu the above lemma we have

sup
xj−1≤x<xj

f(x)− inf
xj−1≤x<xj

f(x) ≥ sup
xj−1≥x<xj

|f(x)| − inf
xj−1≤x<xj

|f(x)|

and hence

Uf (P)− Lf (P) ≥ U|f |(P)− L|f |(P)

and |f | is integrable if f is integrable. Indeed, f integrable means that for any ε there exists

a partition such that

ε > Uf (P)− Lf (P)

and hence by the above

ε > U|f |(P)− L|f |(P) ≥ 0 .

Since

f+(x) =
f(x) + |f(x)|

2
, f−(x) =

−f(x) + |f(x)|
2

the integrability follows from the one of |f | and the linearity of the integral.

The following is immediate.

1.10 LEMMA. Let f be an integrable function on [a, b]. Hence there exists a constant

M > 0 such that |f(x)| ≤M for all ∈ [a, b]. Then∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤M(b− a) .

1.5 Fundamental Theorem of Calculus

1.11 THEOREM. Let f be a function that is integrable on [a, b] and on [b, c]. Then f is

integrable on [a, c] and ∫ c

a

f(x)dx =

∫ b

a

f(x)dx+

∫ c

b

f(x)dx .
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Proof. Pick any ε > 0 and let P be a partition of [a, b] such that∫ b

a

f(x)dx− ε/2 < Lf (P) ≤ Uf (P) <

∫ b

a

f(x)dx+ ε/2

and Q be a partition of [b, c] such that∫ c

b

f(x)dx− ε/2 < Lf (Q) ≤ Uf (Q) <

∫ c

b

f(x)dx+ ε/2

The union R = P ∪ Q, although not a refinement of P nor Q is a partition of the interval

[a, c]. Further,

Lf (R) = Lf (P) + Lf (Q)

and

Uf (R) = Uf (P) + Uf (Q) .

Hence,∫ b

a

f(x)dx+

∫ c

b

f(x)dx− ε < Lf (R) ≤ Uf (R) <

∫ b

a

f(x)dx+

∫ c

b

f(x)dx+ ε .

This implies that f is integrable on [a, c] and its integral is the sum of the integrals on a, b]

and [b, c].

It follows from the definition of the integral that for every function f ,∫ a

a

f(x)dx = 0 .

We adopt the convention that ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx .

1.12 THEOREM. Let U ⊂ R be an open interval and let a ∈ U be any point. Let f be a

continuous real valued function and define for any x ∈ U

F (x) =

∫ x

a

f(t)dt .

The F is differentiable in U and

F ′(x) = f(x)

all x ∈ U .
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Proof. Fix and x0 ∈ U . We have that

F (x)− F (x0) =

∫ x

x0

f(t)dt .

Hence ∣∣∣∣F (x)− F (x0)

x− x0

− f(x0)

∣∣∣∣ =

∣∣∣∣∣
∫ x

x0
[f(t)− f(x0)]dt

x− x0

∣∣∣∣∣ .
For any ε > 0 there exists δ > 0 such that

|f(x)− f(x0)| < ε

for all x with |x− x0| < δ. Thus, by the Lemma above∣∣∣∣∫ x

x0

[f(t)− f(x0)]dt

∣∣∣∣ < ε|x− x0|

for all x with |x− x0| < δ and hence∣∣∣∣F (x)− F (x0)

x− x0

− f(x0)

∣∣∣∣ < ε

for all x with |x− x0| < δ. Hence F (x) is differentiable at x0 and its derivative is f(x0).


