Test 1 for Anaysis I, Math 4317, September 29, 2010, Allowed time is 50 minutes. This is a closed book test.

Always state your reasoning otherwise credit will not be given. Try to be as concise and to the point as possible.

Name:

1: (10 points) Consider the subset S of the real numbers given by

$$S = (-1,1) \cup \{2\}$$
.

- a) Find the closure \overline{S} , i.e., the smallest closed set that contains S.
- b) Find the open interior of S, i.e., the largest open subset of S.

- **2** :(15 points) For which real numbers x is the following inequality true: a) $x^2 + 2x 3 < 0$
- b) Show that the x axis is a closed subset of the plane.

3:(15 points) Consider the sequence given recursively by $x_0 = 1$ and

$$x_{n+1} = \frac{1}{3}(x_n + x_n^2), n = 1, 2, \cdots$$

Is the sequence monotone? Is it bounded? Does this sequence converge? If it does, what is its limit?

4: (15 points) Consider the subset S of the real numbers consisting of all series of the form

$$\sum_{k=1}^{\infty} \frac{a_k}{2^k}$$

where $a_k \in \{0,1\}$. What is the least upper bound of the set S?

5: (20 points) Let E be a compact metric space. Prove that if $S_i, i \in I$ is a collection of closed subsets of E such that for any finite sub-collection $J \subset I$

$$\bigcap_{i\in J} S_i \neq \emptyset$$
,

then

$$\cap_{i\in I} S_i \neq \emptyset .$$

Hint: Reformulate the problem by taking complements in E.

6: Let E be a metric space. True or false: (each item counts 5 points)

- a) The intersection of an arbitrary collection of closed subsets of E is closed.
- b) Any closed subset of a compact subset of E is compact.
- c) Bounded and closed subsets of ${\cal E}$ are compact.
- d) Every compact metric space is complete.
- e) A subset of a complete metric space is complete.