1. The Theorem of Hille and Yosida concerning semi-groups

From now we consider X to be a Banach space.

Definition 1.1. A family of bounded operators $P_t: X \to X, t \ge 0$ is a strongly continuous semi group if

- a) $P_0 = I$.
- b) For any $s, t \geq 0$ we have that $P_{s+t} = P_s P_t$.
- c) For any $f \in X$, $\lim_{t\to 0, t>0} ||P_t f f|| = 0$.

Note that $t \to P_t f$ is continous for all $t \ge 0$, since

$$\lim_{\varepsilon \to 0} ||P_{t+\varepsilon}f - P_tf|| = \lim_{\varepsilon \to 0} ||P_{\varepsilon}P_tf - P_tf|| = 0.$$

Such semi groups are natural in the context of linear evolution equations. An important sub-class are the contraction semi-groups.

Definition 1.2. A family of bounded operators $P_t: X \to X, t \ge 0$ is a contraction semi-group if is a strongly continuous semi-group and for all $t \ge 0$

$$||P_t|| \leq 1$$
.

One would like to think of a semi group as an operator of the form e^{At} for some operator which one would call the generator of the semi-group. Let P_t be a contraction semi-group. Consider the set

$$D(A) = \{ f \in X : \lim_{t \to 0} \frac{P_t f - f}{t} \text{ exists} \} .$$

On D(A) define

$$Af = \lim_{t \to 0} \frac{P_t f - f}{t} .$$

Note that apriori D(A) might consist only of the zero vector. We have, however, the following theorem.

Theorem 1.3. The set D(A) is dense in X and the operator A define above is a linear closed operator.

Proof. Consider

$$U_t f = \frac{1}{t} \int_0^t P_s f ds$$

which exists as a Riemann integral, since the function $s \to P_s f$ is continuous. U_t is a bounded operator since

$$||U_t f|| \le \frac{1}{t} \int_0^t ||P_s f|| ds \le ||f||$$

since P_t is a contraction. By the definition of the Riemann integral we also have that

$$||U_t f - f|| \le \frac{1}{t} \int_0^t ||P_s f - f|| ds$$

from which we see that

$$\lim_{t \to 0} ||U_t f - f|| = 0.$$

In other words, the set

$$\bigcup_{t>0} U_t(X)$$

is dense in X. For t > 0 w also find that

$$P_{\varepsilon}U_{t}f - U_{t}f = \frac{1}{t} \int_{0}^{t} P_{\varepsilon+s}fds - \frac{1}{t} \int_{0}^{t} P_{s}fds = \frac{1}{t} \int_{\varepsilon}^{t+\varepsilon} P_{s}fds - \frac{1}{t} \int_{0}^{t} P_{s}fds$$

so that

$$\frac{P_{\varepsilon}U_{t}f - U_{t}f}{\varepsilon} = \frac{1}{t} \left[U_{\varepsilon}U_{t}f - U_{\varepsilon}f \right] \tag{1}$$

which converges to $U_t f - f$ as $\varepsilon \to 0$. Hence $U_t f \in D(A)$ and

$$AU_t f = \frac{1}{t} \left[U_t f - f \right] .$$

Likewise, from (1)

$$U_{t} \frac{P_{\varepsilon} f - f}{\varepsilon} = \frac{1}{t} \left[U_{t} - I \right] U_{\varepsilon} f$$

and for $f \in D(A)$ we find that

$$U_t A f = \frac{1}{t} [U_t - I] f$$

and in particular,

$$AU_t f = U_t A f . (2)$$

To see that A is closed, let $f_n \in D(A)$ be such that $f_n \to f$ and $Af_n \to v$. We have that

$$\lim_{n \to \infty} U_t A f_n = U_t v ,$$

since U_t is continuous. Further,

$$\lim_{n \to \infty} AU_t f_n = \lim_{n \to \infty} \frac{1}{t} \left[U_t f_n - f_n \right] = \frac{1}{t} \left[U_t f - f \right]$$

so that using (2)

$$U_t v = \frac{1}{t} \left[U_t f - f \right]$$

for all t > 0. As $t \to 0$ the left side converges to v and hence the right side converges too. This implies that $f \in D(A)$ and Af = v.

We call A the infinitesimal generator of P_t .

Since P_t is a contraction, one can define the integral

$$R_{\lambda}(A)f := \int_{0}^{\infty} e^{-\lambda t} P_{t} f dt$$

for all $f \in X$ and $\lambda \in \mathbb{C}$ with $\text{Re}\lambda > 0$ as a Riemann integral.

Theorem 1.4. The operator $R_{\lambda}(A)$ maps X into D(A) and obeys the bound

$$||R_{\lambda}(A)|| \le \frac{1}{\text{Re}\lambda} \ . \tag{3}$$

Moreover, for all $f \in X$

$$(\lambda I - A)R_{\lambda}(A)f = f \tag{4}$$

and for all $f \in D(A)$

$$R_{\lambda}(A)(\lambda I - A)f = f. \tag{5}$$

Thus, the resolvent set of A contains the right half plane and $R_{\lambda}(A) = (A - \lambda I)^{-1}$.

Proof. For $\text{Re}\lambda > 0$ we find

$$||R_{\lambda}(A)|| \leq \int_{0}^{\infty} e^{-\operatorname{Re}\lambda t} ||P_{t}f|| dt \leq \frac{1}{\operatorname{Re}\lambda} ||f||.$$

Again we compute

$$[P_\varepsilon - I]R_\lambda(A)f = e^{\varepsilon\lambda} \int_\varepsilon^\infty e^{-\lambda t} P_t f dt - \int_0^\infty e^{-\lambda t} P_t f dt = (e^{\varepsilon\lambda} - 1) \int_\varepsilon^\infty e^{-\lambda t} P_t f dt - \int_0^\varepsilon e^{-\lambda t} P_t f dt$$

so that

$$\frac{P_{\varepsilon} - I}{\varepsilon} R_{\lambda}(A) f = \frac{(e^{\varepsilon \lambda} - 1)}{\varepsilon} \int_{\varepsilon}^{\infty} e^{-\lambda t} P_{t} f dt - \frac{1}{\varepsilon} \int_{0}^{\varepsilon} e^{-\lambda t} P_{t} f dt .$$

As $\varepsilon \to 0$ we see that the right side converges and hence so does the left side and

$$AR_{\lambda}(A)f = \lambda R_{\lambda}(A)f - f$$

which proves (4). To see (5) we assume that $f \in D(A)$ and write

$$R_{\lambda}(A)[P_{\varepsilon}-I]f = e^{\varepsilon\lambda} \int_{\varepsilon}^{\infty} e^{-\lambda t} P_{t} f dt - \int_{0}^{\infty} e^{-\lambda t} P_{t} f dt = (e^{\varepsilon\lambda}-1) \int_{\varepsilon}^{\infty} e^{-\lambda t} P_{t} f dt - \int_{0}^{\varepsilon} e^{-\lambda t} P_{t} f dt$$

so that upon dividing by ε and taking the limit as $\varepsilon \to 0$ we get that

$$R_{\lambda}(A)Af = \lambda R_{\lambda}(A)f - f$$

which proves (5). The last statement follows from (3).

Remark 1.5. Note that we defined the resolvent to be $(\lambda I - A)^{-1}$ which differs from our usual definition by a minus sign.

Lemma 1.6. Let A be a closed densely defined operator and assume that $(0,\infty) \subset \rho(A)$ and that

$$\|(\lambda I - A)^{-1}\| \le \frac{1}{\lambda}, \ \lambda > 0.$$

Then

$$\lambda(\lambda I - A)^{-1}f \to f$$

as $\lambda \to \infty$.

Proof. Let $f \in D(A)$. Then

$$\lambda(\lambda I - A)^{-1}f - f = (\lambda I - A)^{-1}[\lambda I - \lambda I + A]f = (\lambda I - A)^{-1}Af$$

and therefore

$$\|\lambda(\lambda I - A)^{-1}f - f\| \le \frac{1}{\lambda}\|Af\|$$
,

which tends to 0 as $\lambda \to \infty$. If $f \in X$ for any $\varepsilon > 0$ we can find $g \in D(A)$ so that $||f - g|| < \varepsilon$. Now

$$\lambda(\lambda I - A)^{-1}f - f = \lambda(\lambda I - A)^{-1}(f - g) - (f - g) + \lambda(\lambda I - A)^{-1}g - g.$$

The term

$$\lambda(\lambda I - A)^{-1}(f - g) - (f - g)$$

can be estimated

$$\|\lambda(\lambda I - A)^{-1}(f - g) - (f - g)\| \le \|\lambda(\lambda I - A)^{-1}(f - g)\| + \|f - g\| \le 2\|f - g\| = 2\varepsilon$$
 and the second term tends to zero as $\lambda \to \infty$ which proves the lemma.

Lemma 1.7. With the same assumptions as in the previous lemma the operator

$$\lambda(\lambda I - A)^{-1}A$$

is bounded and for any $f \in D(A)$

$$\|\lambda(\lambda I - A)^{-1}Af - Af\| \to 0$$

as $\lambda \to \infty$.

Proof.

$$\lambda(\lambda I - A)^{-1}A = \lambda(\lambda I - A)^{-1}(A - \lambda I) + \lambda^{2}(\lambda I - A)^{-1}$$
$$= \lambda^{2}(\lambda I - A)^{-1} - \lambda$$

and therefore for any $f \in D(A)$

$$\|\lambda(\lambda I - A)^{-1} A f\| = \|\lambda^2 (\lambda I - A)^{-1} f - \lambda f\| \le 2\lambda \|f\|.$$

Since D(A) is dense, this proves that $\lambda(\lambda I - A)^{-1}A$ is bounded. The other statement follows from the previous lemma.

The idea is now to replace the operator A by the operator

$$A_{\lambda} := \lambda (\lambda I - A)^{-1} A$$

which is bounded. The semigroup

$$e^{A_{\lambda}t}$$

is now simply defined by the power series, which is norm convergent.

Lemma 1.8. The operator

$$e^{A_{\lambda}t} := \sum_{k=0}^{\infty} \frac{(A_{\lambda}t)^k}{k!}$$

is norm convergent and is a contraction semi-group.

Proof. That it is norm convergent and a semi group is standard and the proof is left to the reader. Now,

$$||e^{A_{\lambda}t}|| = ||e^{t(\lambda^{2}(\lambda I - A)^{-1} - \lambda)}|| \le e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} ||\lambda^{2}(\lambda I - A)^{-1}|| \le e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^{k} \lambda^{k}}{k!} = 1$$

since

$$\|\lambda^2(\lambda I - A)^{-1}\| \le \lambda .$$

Theorem 1.9. A closed operator A is the generator of a contraction semi-group if and only if

$$(0,\infty)\subset\rho(A)$$

and

$$||R_{\lambda}(A)|| \leq \frac{1}{\lambda}, \ \lambda > 0.$$

Proof. We have to show that

$$\lim_{\lambda \to \infty} e^{A_{\lambda}t}$$

exists and defines a contraction semi group with infinitesimal generator A. Fix $\lambda > 0$ and $\mu > 0$ and write

$$e^{A_{\lambda}t} - e^{A_{\mu}t} = e^{A_{\mu}t + (A_{\lambda} - A_{\mu})s}|_{0}^{t} = \int_{0}^{t} \frac{d}{ds} e^{A_{\mu}t + (A_{\lambda} - A_{\mu})s} ds$$

which equals

$$\int_0^t e^{A_{\mu}(t-s)} (A_{\lambda} - A_{\mu}) e^{A_{\lambda}s} ds = \int_0^t e^{A_{\mu}(t-s)} e^{A_{\lambda}s} (A_{\lambda} - A_{\mu}) ds$$

where we have used that $A_{\lambda}A_{\mu} = A_{\mu}A_{\lambda}$ and that

$$e^{A_{\mu}t + (A_{\lambda} - A_{\mu})s} = e^{A_{\mu}t}e^{(A_{\lambda} - A_{\mu})s}.$$

Now for $f \in X$

$$||[e^{A_{\lambda}t} - e^{A_{\mu}t}]f|| \le \int_0^t ||e^{A_{\mu}(t-s)}e^{A_{\lambda}s}(A_{\lambda} - A_{\mu})f||ds||$$

so that

$$\|[e^{A_{\lambda}t} - e^{A_{\mu}t}]f\| \le t\|(A_{\lambda} - A_{\mu})f\|$$
 (6)

If $f \in D(A)$ then

$$||A_{\lambda}f - Af|| \to 0$$

as $\lambda \to \infty$ and hence $e^{A_{\lambda}t}f$ is a Cauchy sequence and hence converges. Since D(A) is dense, by standard arguments, $e^{A_{\lambda}t}f$ converges to P_tf for all $f \in X$ and the linear operator P_t is a contraction. We have to show that it is a semi group.

$$P_{t+s}f = \lim_{\lambda \to \infty} e^{A_{\lambda}(t+s)}f = \lim_{\lambda \to \infty} e^{A_{\lambda}t}e^{A_{\lambda}s}f$$

$$= \lim_{\lambda \to \infty} e^{A_{\lambda}t} [e^{A_{\lambda}s} - P_s] f + \lim_{\lambda \to \infty} e^{A_{\lambda}t} P_s f$$

Now note that

$$||e^{A_{\lambda}t}[e^{A_{\lambda}s}-P_s]f|| \le ||[e^{A_{\lambda}s}-P_s]f||$$

which tends to zero as $\lambda \to \infty$ and

$$\lim_{\lambda \to \infty} e^{A_{\lambda}t} P_s f = P_t P_s f .$$

Since

$$||[P_t - I]f|| \le 2||f||$$

it suffices to show that

$$\lim_{t \to 0} ||[P_t - I]f|| = 0$$

for a dense set of vectors f. Pick $f \in D(A)$. Then by (6) we have that

$$||[P_t - e^{A_\mu t}]f|| \le t||(A - A_\mu)f|| \tag{7}$$

and hence

$$||[P_t - I]f|| \le ||[P_t - e^{A_\mu t}]f|| + ||[e^{A_\mu t} - I]f|| \le t||(A - A_\mu)f|| + ||[e^{A_\mu t} - I]f|| \to 0$$

as $t \to 0$. Thus, we have shown that P_t is a contraction semi group and therefore it has a generator B. We have shown that necessarily $\rho(B)$ contains the complex numbers with positive real part and, moreover,

$$\|(\lambda I - B)^{-1}\| \le \frac{1}{\operatorname{Re}\lambda} \ .$$

For $f \in X$ we find

$$e^{A_{\lambda}t}f - f = \int_0^t e^{A_{\lambda}s} A_{\lambda}f ds$$

and find that for $f \in D(A)$

$$P_t f - f = \int_0^t P_s A f ds$$
.

From this we find that for $f \in D(A)$

$$\lim_{t \to 0} \frac{[P_t - I]f}{t} = Af$$

and hence $A \subset B$. But for arbitrary $g \in X$

$$(\lambda I - B)(\lambda I - A)^{-1}g = (\lambda I - A)(\lambda I - A)^{-1}g = g$$

and hence

$$(\lambda I - B)(\lambda I - A)^{-1} = I$$

SO

$$(\lambda I - A)^{-1} = (\lambda I - B)^{-1}$$

and therefore D(B) = D(A).