
THE MIN-MAX AND MAX-MIN PRINCIPLE

Eigenvalues of linear operators are notoriously hard to compute and a considerable amount
of research goes into estimating eigenvalue and coming up with numerical schemes for comput-
ing them in an efficient manner. The simplest way for estimating eigenvalues are the min-max
and the max-min principles we now describe.

The setting is a Hilbert space H and a linear, compact and self-adjoint operator A : H → H.
The spectrum of A consists of {0}∪σp(A) and the eigenvalues, counted with their multiplicity
are real and can only accumulate at 0. We denote the positive eigenvalues by λ1 ≥ λ2 ≥ · · · ≥ 0
and the negative eigenvalues by µ1 ≤ µ2 ≤ · · · ≤ 0.

Recall that

λ1 = max{〈Ax, x〉 : x ∈ H, ‖x‖ = 1} ,
and any x1, ‖x1‖ = 1 with 〈Ax1, x1〉 = λ1 satisfies Ax1 = λ1x1. Likewise,

µ1 = min{〈Ax, x〉 : x ∈ H, ‖x‖ = 1} .

Similar expressions can be found for higher eigenvalues. The following theorems are stated
only for the positive eigenvalues and we leave it to the reader to formulate them for the
negative eigenvalues.

Theorem 0.1. Min-max priniple Define the numbers

νn = min{sup{〈Ax, x〉 : x ⊥Mn , ‖x‖ = 1} : Mn ⊂ H, dimMn = n− 1} .

Then νn = λn.

Proof. Pick any subspace Mn ⊂ H with dimMn = n− 1. Pick any vector

x =
n∑

j=1

cjxj

where Axj = λjxj. we want to choose the numbers cj such that x 6= 0 and x ⊥Mn. Pick any
basis {e, . . . , en−1 in Mn and consider the system of equations

n∑
j=1

cj〈xj, ei〉 = 0 , i = 1, . . . , n− 1 .

These are n − 1 equations with n unknowns and hence there exists a nontrivial solution
d1, . . . , dn. The vector

x =
n∑

j=1

djxj

is perpendicular to Mn and nonzero and hence we may assume that it is normalized. Now

〈Ax, x〉 =
n∑

j=1

λj|cj|2
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because the eigenvectors are ortho-normal. Recall that the λj are ordered in a decreasing
fashion and hence

〈Ax, x〉 ≥ λn

n∑
j=1

|cj|2 = λn‖x‖2 .

Hence, we have shown that for any Mn,

sup{〈Ax, x〉 : x ⊥Mn , ‖x‖ = 1} ≥ λn

and hence νn ≥ λn. The converse inequality follows by choosing Mn = span[x1, . . . , xn−1].
Then

sup{〈Ax, x〉 : x ⊥Mn , ‖x‖ = 1} = λn

which implies that νn ≤ λn. �

Now we come to the max-min principle. This is in many ways more natural than the
previous one.

Theorem 0.2. Consider the number

τn = sup{min{〈Ax, x〉 : x ∈ Nn} : Nn ⊂ H, dimNn = n}
Then τn = λn.

Proof. Let Nn be an arbitrary n-dimensional subspace of H and consider a basis {e1, . . . , en}
of this space. Any vector x ∈ Nn can be written as x =

∑n
j=1 cjej. In fact, because we have

n free coefficients we may choose them in such a way that x is normalized and perpendicular
to x1, . . . , xn−1. Hence,

〈Ax, x〉 ≤ λn

for every subspace Nn and hence τn ≤ λn. To obtain the reverse inequality we choose the
space Nn spanned by the vectors x1, . . . , xn. Then min{〈Ax, x〉 : x ∈ Nn} = λn and hence
τn ≥ λn. �

In applications one proceeds often in the following way. Choose any n-dimensional subspace
Nn and fix an orthonormal basis {e1, . . . , en} in Nn. Now form the matrix B consisting of
the matrix elements 〈Aei, ej〉. This n×n matrix is self-adjoint and hence can be diagonalized
with eigenvalues r1 ≥ r2 ≥ · · · ≥ rn. Theorem can be applied to show that

λ1 ≥ r1 , λ2 ≥ r2 , · · · , λn ≥ rn .

Diagonalizing B yields eigenspaces E1, . . . , En. Applying Theorem with N1 = E1 yields the
first inequality. Then we choose N2 = E1 ⊕ E2 which yields the second inequality and so on.
While this procedure delivers lower bounds, we do not know anything about how good these
bounds are. There is no general method to get upper bounds on the first eigenvalue of A.

Recall that the set of self adjoint operators is partially ordered. We say that A ≥ B if for
any x ∈ H we have that

〈Ax, x〉 ≥ 〈Bx, x〉 .
The min-max or max-min theorems about immediately imply the

Theorem 0.3. Let A,B be compact self adjoint operator and assume that A ≥ B. Denote
the eigenvalues of A by λ1 ≥ λ2 ≥ · · · and the eigenvalues of B by µ≥µ2 ≥ · · · . Then

λ1 ≥ µ1 , λ2 ≥ µ2 , · · · .
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Proof. We apply Theorem to the spaces Nn = En where En is the space spanned by the first
n eigenvectors of B. It follows that

λn ≥ min{〈Ax, x〉 : x ∈ En} ≥ min{〈Bx, x〉 : x ∈ En} = µn .

�


