
BANACH ALGEBRAS

1. Basic definitions, invertibility

There are a number of books and we follow Kolmogorov-Fomin, Rudin, Neumark, Milman
and Arveson. I also will be using some notes by Eric Carlen. In this section we shall talk
about algebras over the complex numbers C. An algebra is a vector space together with a
multiplication satisfying

x(yz) = (xy)z

(x+ y)z = xz + yz , z(x+ y) = zx+ zy

and for α ∈ C,

α(xy) = (αx)y = x(αy)

Definition 1.1. A Banach Algebra A is an Algebra that is a Banach space with a norm
that satisfies

‖xy‖ ≤ ‖x‖‖y‖ ,
and there exists a unit element e ∈ A such that ex = xe = x, ‖e‖ = 1.

Examples:
a) The space of continuous functions C(K) where K is compact and with the supremums

norm.
b) The space of all complex values functions in L1(S) with the product

f ? g(x) =

∫
S
f(x− y)g(y)dy .

c) The space of all bounded linear operators on a Hilbert space.
d) The space of all complex valued functions f ∈ L1(R) together with the product

f ? g(x) =

∫
R
f(x− y)g(y)dy .

This is not a Banach Algebra in the sense given above, because there is no unit element.
If A does not have a unit element then we can consider the collection of pairs

(α, x) , α ∈ C , x ∈ A

with the multiplication

(α, x) · (β, y) = (αβ, xy + αy + βx)

and norm

‖(α, x)‖ = |α|+ ‖x‖
contains the unit element (1, 0). This is a Banach Algebra with unit element. Hence, it is no
restriction of generality to consider Banach Algebras that contain a unit element.

Proposition 1.2. In a Banach Algebra multiplication is continuous.
1
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Proof. Suppose that xn → x and yn → y. Then

xnyn − xy = (xn − x)yn + x(yn − y)

and since ‖yn‖ is bounded

‖xnyn − xy‖ ≤ ‖(xn − x)‖‖yn‖+ ‖x‖‖(yn − y)‖ → 0 .

�

Definition 1.3. An element x ∈ A is invertible if the exists an element x−1 ∈ A such that

xx−1 = x−1x = e .

Inverses are unique because ax = xa = e, bx = xb = e then

a = ae = a(xb) = (ax)b = eb = b .

Proposition 1.4 (Neumann series.). Let x ∈ A and ‖x‖ < 1. Then (e− x) has an inverse.

Proof. Use the series

sN =
N∑
n=0

xn = e+ x+ x2 + x3 + · · ·+ xN

which is a Cauchy sequence and hence converges to some element s. Moreover

(e− x)sN = e− xN+1 → e

as N → ∞. The same is true for sN(e − x) and by the continuity of multiplication we have
that

s(x− e) = (x− e)s = e .

�

Definition 1.5. Let x ∈ A be given. The set of all λ ∈ C such that (λe− x) is not invertible
is called the spectrum of x and denoted by σ(x). The spectral radius ρ(x) is defined by

ρ(x) = sup{|λ| : λ ∈ σ(x)}

Theorem 1.6. Let x ∈ A and p(µ), µ ∈ C a polynomial with complex coefficients. Then we
have for the spectrum of p(x) ∈ A

σ(p(x)) = p(σ(x)) .

Proof. We assume that the degree of p is N . Let λ be a point in σ(p(x)), i.e., the element
(λe− p(x)) has no inverse. The polynomial λ− p(µ) can be decomposed into linear factors

λ− p(µ) = ΠN
k=1(κj − µ) (1)

where κj are the roots counted with multiplicity. Hence

λe− p(x) = ΠN
k=1(κje− x)

and since his element has no inverse at least one of the factor has no inverse. Hence κj ∈ σ(x)
for some j and since p(κj) = λ we have that λ ∈ p(σ(x)). Conversely, assume that λ ∈ p(σ(x)),
i.e., p(ν) = λ for some ν ∈ σ(x). Using (1) λ− p(ν) = ΠN

k=1(κj − ν) = 0 and hence ν = κj for
some j. This means that the element (κje− x) is not invertible and hence κj ∈ σ(x). Hence
λe− p(x) is not invertible and λ ∈ σ(p(x)). �
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By the Neumann series we know that ρ(x) ≤ ‖x‖ and hence we have that

‖xn‖ ≥ ρ(xn) = sup{|λ|n : λ ∈ σ(x)} = ρ(x)n

which proves

Corollary 1.7. We have that
ρ(x) ≤ lim inf

n→∞
‖xn‖1/n .

The following Lemma is sometimes useful. It allows to replace lim inf by lim in the above
formula.

Lemma 1.8. Let an, n = 1, 2, . . . be a sequence of positive real numbers such that an+m ≤
anam. Then limn→∞ a

1/n
n exists.

Proof. Clearly
an ≤ an1

and hence a
1/n
n is bounded. Fix k ∈ N. Any number n can be written

n = lnk + rn

where 0 ≤ rn < k. Hence
an ≤ alnkarn ≤ alnk arn

so that
a1/nn ≤ a

ln/n
k a1/nrn .

As n→∞, ln/n→ 1/k and a
1/n
rn → 1 so that we have

lim sup
n→∞

a1/nn ≤ a
1/k
k

for any k and hence

lim sup
n→∞

a1/nn ≤ lim inf
k→∞

a
1/k
k

and the limit exists. �

Theorem 1.9. Let x ∈ A. Then the set σ(x) is non-empty and compact. Moreover, the limit
limn→∞ ‖xn‖1/n exists and equals to the spectral radius ρ(x).

Proof. Picking λ > ‖x‖ we have that

(λe− x) = λ(e− x

λ
)

and since ‖x
λ
‖ < 1, (λe − x) is invertible. Hence σ(x) is a bounded set. For λ, µ /∈ σ(x) we

have that
(λe− x)−1 − (µe− x)−1 = (µ− λ)(λe− x)−1(µe− x)−1

or
(µe− x)−1 = (λe− x)−1[e− (µ− λ)(µe− x)−1] .

and the second factor has an inverse for |µ − λ| small enough which shows that whenever
µ /∈ σ(x) then λ /∈ σ(x) for |µ − λ| small enough. It follows that the complement of σ(x)
is open and hence σ(x) is closed and bounded and hence compact. Pick any bounded linear
function f : A → C. We note that for λ, µ not in σ(x) we have that

f((λe− x)−1)− f((µe− x)−1) = (µ− λ)f((λe− x)−1(µe− x)−1)
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so that as µ→ λ we have that

d

dλ
f((λe− x)−1) = −f((λe− x)−2) .

Hence, the function
λ→ f((λe− x)−1)

is analytic on the complement of σ(x). For |λ| > ‖x‖ we find that

|f((λe− x)−1)| ≤ ‖f‖‖(λe− x)−1‖ ≤ ‖f‖
|λ|
‖(e− x

λ
)−1‖ ≤ C

|λ|
→ 0

as λ| → ∞. Suppose that σ(x) = ∅. Then f((λe − x)−1) is an entire function that vanishes
at infinity and hence by Liouville’s theorem it is zero. Hence

f(x−1) = 0

for every f ∈ A∗ which yields that x−1 = 0 which is a contradiction.
It remains to show that ρ(x) ≥ lim infn→∞ ‖xn‖1/n. For |λ| > ‖x‖ we have that

f((λe− x)−1) =
∞∑
n=0

f(xn)

λn+1
.

This representation also holds for all |λ| > ρ(x) because the radius of convergence is given by
the distance to the nearest singularity. Hence

sup
n

|f(xn)|
|λ|n+1

<∞

By the principle of uniform boundedness we find that

‖xn‖
|λ|n+1

≤ C(λ)

and hence
lim sup
n→∞

‖xn‖1/n ≤ |λ|

for all λ with |λ| > ρ(x). Hence

ρ(x) ≥ lim sup
n→∞

‖xn‖1/n .

�

2. Ideals, Gelfand transform

Another important concept is the ideal. We shall assume that A is a commutative Banach
Algebra.

Definition 2.1. A subspace I of a commutative Banach Algebra A is called an ideal if for
any x ∈ I it follows that xy ∈ I for all y ∈ A.

There are two trivial ideals, the one consisting of the zero element and the one consisting of
A itself and we shall assume that all the ideals under consideration are non-trivial. Note, any
ideal that contains the unit element e is trivial. Hence an ideal consist only of non-invertible
elements. An ideal is maximal if it is not contained in any other non-trivial ideal. An
example is furnished by the Banach Algebra C(K) of complex valued continuous function on
a compact set K with the supremum norm.
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Theorem 2.2. Any maximal ideal I ⊂ C(K) consists of all the functions in C(K) that vanish
at some fixed but arbitrary point.

Proof. First we show that the set Ix0 consisting of all the functions in C(K) that vanish at
some point x0 ∈ K form a maximal ideal. That they form an ideal is clear. Suppose that Ix0
is not maximal. Hence it is a proper subset of an ideal J . Let f0 ∈ J \ Ix0 . Then f0(x0) 6= 0
and for an arbitrary function f ∈ C(K) we have that

f(x) = g(x) +
f(x0)

f0(x0)
f0(x)

where g vanishes at x0. Hence g ∈ Ix0 ⊂ J and it follows that J = C(K), i.e., trivial. Now,
suppose that I is any maximal ideal. we have to show that there exists a point x0 so that
all functions that belong to I vanish at that point. Suppose there is no such point. Hence
for every point x0 ∈ K we find a continuous function fx0 that does not vanish at x0. Since
it is continuous there exists an open ball centered at x0 such that fx0 does not vanish on this
ball. The collection of such balls form an open cover of K and hence, since K is compact,
there exists a finite sub-cover, B(x1), . . . , B(xN) and functions fx1 , . . . , fxN so that fxi does
not vanish in B(xi). The function

g(x) =
N∑
i=1

|fxi(x)|2

belongs to the ideal. g(x) > 0 on K and hence 1/g(x) is continuous. Thus

1 =
1

g(x)
g(x)

also belongs to the ideal and hence the ideal is trivial. �

Note that we have obtained a one to one correspondence between the points in K and the
maximal ideals. Thus, we may consider the continuous function on K as functions from the
set of maximal ideals into the complex numbers. This point of view is fruitful and should be
kept in mind in what follows since it will allows us to realize commutative Banach Algebras
as functions on a compact space.

Lemma 2.3. Any non-trivial ideal is a subset of a maximal ideal.

Proof. Denote the ideal by I. A partial order among ideals containing I is established through
inclusion. Consider any chain of such non-trivial ideals Iα, i.e. for any α 6= β either Iα ⊂ Iβ
or Iβ ⊂ Iα. We claim that U = ∪αIα contains I, is an ideal and hence an upper bound.
Clearly, U is a subspace since all Iβ are subspaces. Any x ∈ U is in some Iα and if y ∈ A is
any element we have that xy ∈ Iα und thus in U . Since e is not in any of the Iβ it is not in U
and hence U is nontrivial. That I ⊂ U is evident. By Zorn’s lemma there exists a maximal
element M, i.e., M is an ideal such that whenver V is an ideal that contains I and M then
V =M. Hence M is a maximal ideal. �

Corollary 2.4. The closure of an ideal is an ideal. In particular any maximal ideal is closed.

Proof. This follows from the continuity of multiplication and the fact that the closure of a
non-trivial ideal is nontrivial. �
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Corollary 2.5. An element x in a Banach algebra is invertible if and only if it is not a
member of a maximal ideal. In particular, a Banach Algebra that has no non-trivial maximal
ideals is a field.

Proof. If x is invertible and member of an ideal, then this ideal is A and hence trivial. Con-
versely, assume that x is not invertible. We have to show that it is a member of a maximal
ideal. Consider the space I = {y ∈ A : y = xz, z ∈ A}. This space is linear. Since A is
commutative, it is an ideal. Moreover, it is not trivial, since it does not contain e. Otherwise
x would be invertible. Hence I is an ideal and hence contained in a non-trivial maximal
ideal. �

Let I be a closed ideal in the Banach Algebra A. The quotient space A/I is again a Banach
Space. Recall that the norm is given by

‖[x]‖ = inf
z∈I
‖x− z‖ .

Next we define the multiplication. Let [x], [y] ∈ A/I where x, y are representatives of the
respective equivalence classes. Then we define

[x][y] = [xy] .

With this multiplication [x], [y] ∈ A/I is a Banach Algebra, the factor algebra. We leave the
proof of this as an exercise for the reader.

Lemma 2.6. An ideal I is a proper subset of a nontrivial ideal if and only if its factor algebra
A/I has nontrivial ideals.

Proof. Let I ⊂ J ⊂ A, J 6= A. In the equivalence class [x] = x + I consider the subclass
[x′] = x′+J . It is easy to check that one obtains an ideal in the factor algebra. The proof of
the converse is analogous. �

Corollary 2.7. An ideal I ∈ A is maximal if and only if A/I is a field.

Proof. This follows from the previous lemma and corollary. �

Theorem 2.8 (Gelfand-Mazur). If a Banach algebra is a field, i.e., all non-zero elements are
invertible, then it is isometrically isomorphic to C.

Proof. Let λ ∈ C be a number so that (λe− x) is not invertible. Such a number exists, since
σ(x) is not empty. Hence λe − x = 0 and x = λe. Hence, for every x there exists a unique
λ ∈ C so that x = λe and conversely for λ ∈ C we find x = λe. Thus the map x → λ is an
isomorphism. Since ‖x‖ = |λ|‖e‖ = |λ|, this isomorphism is an isometry. �

Corollary 2.9. If I is a maximal ideal then A/I is isometrically isomorph to C.

Corollary 2.10. A closed ideal M is maximal if and only if it has co-dimension one.

Proof. IfM is a maximal ideal then every element x ∈ A can be written as a sum λe+y where
y ∈M and λ ∈ C is unique. This is so, becauseA/M is isometrically isomorphic to C, i.e., any
element in x ∈ A has the property that there exists a complex number λ such that λe−x ∈M.
The number λ is unique because if µe−x ∈M, then (λ−µ)e = (λe−x)− (µe−x) ∈M and
therfore µ = λ. Hence M has co-dimension one. Conversely, if M is a closed ideal that has
co-dimension one then for any element element x ∈ A, x − λe ∈ M for some unique λ ∈ C.
In other words the factor algebra A/M is isomorphic to C and M is maximal. �
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A multiplicative functional is a linear functional f : A → C such that for any x, y ∈ A we
have f(xy) = f(x)f(y).

Lemma 2.11. Multiplicative functionals are bounded, in particular if f is any multiplicative
function, |f(x)| ≤ ‖x‖, in fact ‖f‖ = 1.

Proof. We assume that f is not the zero functional. Since f(x) = f(xe) = f(x)f(e) we have
that f(e) = 1. Further, if x is invertible then f(e) = f(xx−1) = f(x)f(x−1) and hence
f(x) 6= 0. Let x be given and pick |λ| > ‖x‖. Then (λe− x) has an inverse and hence

λ− f(x) = f(λe− x) 6= 0 .

This means that for any |λ| > ‖x‖ we have that f(x) 6= λ. Hence |f(x)| ≤ ‖x‖ and, moreover,
f(e) = 1 = ‖e‖. �

Corollary 2.12. The kernel of f is a maximal ideal

Proof. The kernel is closed because f is bounded. It is obviously linear and if f(x) = 0 we
have that f(xy) = f(x)f(y) = 0. Hence the kernel is an ideal. Moreover the co-dimension is
one. Hence it is maximal. �

Recall that any linear functional that have the same kernel must be a multiple of each
other. To see this suppose that f and g be two bounded linear functionals and assume that

Ker(f) = Ker(g). Pick any element x0 such that f(x0) 6= 0 and note that x− f(x)
f(x0)

x0 and note

that this element is in the kernel of f . Hence it is in the kernel of g and

g(x) =
g(x0)

f(x0)
f(x) .

Now suppose that the functionals are, in addition, multiplicative. The claim is that g(x) =
f(x). Indeed, from the displayed formula we have that

1 = g(e) =
g(x0)

f(x0)
f(e) =

g(x0)

f(x0)
.

Hence f(x0) = g(x0) and f(x) = g(x).

Lemma 2.13. For any maximal ideal M there exists a unique multiplicative functional such
that Ker(f) =M. We denote this functional by fM.

Proof. The maximal ideal M has co-dimension one. For any x ∈ A there exists a unique
λ ∈ C so that λe− x ∈M. Define

f(x) = λ .

For x ∈ A and α ∈ C we have that µe − αx ∈ M and αλ − αx ∈ M and hence µ = αλ. If
x, y ∈ A then (λe− x), (µe− x) ∈M and hence (λ+ µ)− (x+ y) ∈M. Hence f is linear. If
x, yM then (λe− x), (µe− x) ∈M and (µλe− xy) = µ(λe− x) + x(µ− y) ∈M. Hence f is
multiplicative. Its kernel is M. Moreover, this functional is uniquely determined by M. �

Thus we have established a one to one correspondence between multiplicative functionals
and maximal ideals. The kernel of every multiplicative functional is a maximal ideal and,
conversely, if M is a maximal ideal, it is the kernel of a multiplicative functional.
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Definition 2.14. Denote the set of maximal ideals in a Banach Algebra by M(A). For every
x ∈ A we define a map

x̂ :M(A)→ C
given by

x̂(M) = fM(x)

where fM is the unique multiplicative functional that has M as its kernel. The map x→ x̂ is
called the Gelfand Transform of x.

Theorem 2.15.
a) The Gelfand Transform is linear, multiplicative and ê = 1.
b) x ∈ M if and only if x̂(M) = 0. If M1 6= M2 then there exists x ∈ A such that
x̂(M1) 6= x̂(M2).
c) x ∈ A is invertible if and only if x̂(M) 6= 0 for every maximal ideal M. In other words
g(x) 6= 0 for all multiplicative functionals.
d)

σ(x) = {x̂(M) :M∈M(A)} = {g(x) : g is a multiplicative functional}
e) |x̂(M)| ≤ 1 and ‖fM‖ = 1.

Proof.
a): Let x, y ∈ A. Then

x̂y(M) = fM(xy) = fM(x)fM(y) = x̂(M)ŷ(M) .

The linearity is obvious, as well as ê = 1.
b): If x ∈M, then fM(x) = 0 and conversely. Hence x̂ = 0 if and only if x ∈M. IfM1 6=M2

then fM1 6= fM2 and conversely which proves the statement.
c): If x is invertible then x is not a member of any maximal ideal and conversely. Because
every multiplicative functional g has a kernel that is a maximal ideal and hence g(x) 6= 0.
Conversely if g(x) 6= 0, x cannot be in any maximal ideal.
d): The two sets in item d) are the same because there is a one to one correspondence between
multiplicative functionals and maximal ideals. Denote this set by S. Let x ∈ A and λ ∈ σ(x).
Then there exists a multiplicative functional g with g(λe − x) = 0 and hence λ = g(x) and
hence λ ∈ S. Conversely assume if f is a multiplicative functional and set f(x) =: λ and note
that f(λe− x) = 0 and hence λe− x is not invertible and λ ∈ σ(x).
e): This statement follows from a lemma we proved before. �

Next we have to talk a bit about the topology of the set of all multiplicative functionals.
These are elements in A∗ and there is a natural topology on A∗, w∗-topology (weak star).
Let us recall these concepts in the case of separable spaces which allows us to talk in terms
of sequences. Otherwise we have to talk about nest or directly in terms of neigborhoods. On
a Banach space we usually consider two different topologies, the strong topology in which
sequences converge strongly and the weak topology in which a sequence xn ∈ A converges to
x weakly if and only if f(xn)→ f(x) for all f ∈ A∗. The dual space A∗ is also a Banach Space
and hence we have the strong convergence and the weak convergence. Once more, fn → f
weakly if and only if for every g ∈ A∗∗ we have that g(fn)→ g(f). There is, however a weaker
topology. There is a class of bounded linear functional given by f → f(x). Hence we say that
fn converges w∗ to f if and only if fn(x)→ f(x) for all x ∈ A. The standard definition is
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Definition 2.16. The Z be a family of linear functionals that separate points in A. The
the Z-weak topology σ(A, Z) is the weakest topology in which all linear functionals in Z are
continuous.

Because of the separation property this topology is a Hausdorff topology i.e., for any f, g ∈ Z
with f 6= g there exist open sets Of , Og with Of ∩Og = ∅ and f ∈ Of , g ∈ Og. Thus, σ(A,A∗)
is the weak topology and σ(A∗,A) is the w∗-topology on A∗. The system of neighborhoods
that generate that topology is given by

Ox1,...,xn,δ(f0) = {f ∈ A∗ : |f(xk)− f0(xk)| < δ, k = 1, . . . , n} .
The key theorm about the w∗-topology is the following

Theorem 2.17. Let A∗ be the dual of some Banach space A. Then the unit ball in A∗ is w∗

compact.

Note that in the case of a reflexive Banach space the weak topology and the weak star
topology are the same.

Lemma 2.18. The space of multiplicative functionals is a closed subset of A∗. The function
fM → fM(x) is a continuous function on A∗, i.e., x̂(M) is a continuous function on M(A).

Proof. Let f0 be in the closure of the multiplicative functionals. Thus, in every neighborhood
of f0 we find a multiplicative functional. Recall that every multiplicative functional is of the
form fM for some maximal ideal M. Now we pick the neighborhood Ox,y,x+y,δ(f0) and note
that this means

|fM(x)− f0(x)| < δ , |fM(y)− f0(y)| < δ , |fM(x+ y)− f0(x+ y)| < δ .

Hence |f0(x+y)−f0(x)−f0(y)| = |f0(x+y)−fM(x+y)−(f0(x)−fM(x))−(f0(y)−fM(y)| ≤ 3δ.
and since δ > 0 is arbitrary, f0(x + y) = f0(x) + f0(y). A similar argument shows that
f0(αx) = αf0(x) and that f0(x)f0(y) = f0(xy). Hence f0 is a multiplicative functional and
hence this set is w∗ closed. For a given multiplicative functional fM0 we pick the neighborhood
Ox0,ε(fM0). If fM ∈ Ox0,ε(fM0) then

|x̂0(M0)− x0(M)| = |fM0(x0)− fM(x0)| < ε

and hence x̂0 is continuous at M0. �

we may collect what we have so far in the following theorem:

Theorem 2.19. The map x → x̂ is a homomorphism of the Banach Algebra A into the
algebra C(M(A)) , the continuous functions on the compact Hausdorff space M(A) the space
of maximal ideals.

We may sharpen this theorem in a few ways by introducing the following notions.

Definition 2.20. The intersection of all maximal ideals is called the radical of A. A Banach
Algebra is called regular if for any x ∈ A, ‖x2‖ = ‖x‖2. A Banach Algebra A is symmetric

if for any x̂(M) there exists y ∈ A such that ŷ(M) = x̂(M).

Theorem 2.21.
a) If the radical of a Banach Algebra consists only of the the zero element, then the map x→ x̂
is one to one.
b) Is A regular, then is is isometrical isomorphic to C(M(A)).
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c) Is A symmetric, the the image of A under the map x→ x̂ is dense in C(M(A)).
d) If A is regular and symmetric, then it is isometrically isomorphic to C(M(A)).

Proof.
a): Assume that there exists x0 6= 0 with f(x0) = 0 for all multiplicative functionals. Then
x0 ∈ M for all maximal ideals and hence it is in the radical and thus zero. This is a
contradiction.
b): By the assumed regularity we have that

‖x2n‖ = ‖x‖2n

and hence
‖x2n‖1/2n = ‖x‖

and so σ(x) = ‖x‖. Thus the radical consists only of the zero element. Hence the map x→ x̂
is an isomorphism. We also remember that

max
M
|x̂(M)| = σ(x) = ‖x‖

which yields the isometry.
c): Let A consist of the functions x̂(M). Since e(M) = 1, forM1 6=M2 we have x such that
x̂(M1) 6= x̂(M2) and since A is symmetric we have that A is dense in C(M(A)). Thus A is
dense in C(M) by the Stone-Weierstrass Theorem.
d): The map x→ x̂ is an isometric isomorphism. It is symmetric and hence the set {x̂(M) :
x ∈ A} is dense in C(M(A)). Since A is complete, so is {x̂(M) : x ∈ A} and hence this set
is equal to C(M(A)).

�

Theorem 2.22 (Stone-Weierstrass theorem). Consider the Banach Algebra of continuous
functions on a compact set M . Let A be a sub-algebra such that 1 ∈ A, A separates points,
i.e., for t1 6= t2 ∈ M there exists a ∈ A such that a(t1) 6= a(t2) and finally assume that if

a(t) ∈ C(M) then a(t) ∈ C(M). Then A is dense in C(M).


