
SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER’S FORMULA

1. Uniqueness for solutions of differential equations.

We consider the system of differential equations given by

d

dt
~x = ~v(~x) , (1)

with a given initial condition ~x(0) = ~x0. Here ~x ∈ Rn and ~v is a function that maps Rn into
Rn. We shall assume that for any two vectors ~x1, ~x2 we

‖~v(~x1)−~(~x2)‖ ≤ L‖~x1 − ~x2‖
where L is some constant, usually called the Lipschitz constant. An example is

~(~x) = A~x

where A is a constant real n× n matrix. IWe compute

‖A~x1 − A~x2‖2 = ‖A(~x1 − ~x2)‖2 = (~x1 − ~x2) · ATA(~x1 − ~x2) ≤ λ‖(~x1 − ~x2)‖2

where λ is the largest eigenvalue of ATA.
The following is relatively easy to prove.

Theorem 1.1. The differential equation (1) has at most one solution that satisfies the given
initial condition.

Proof. Suppose there are two solutions ~x1(t) and ~x2(t) both satisfying ~x1(0) = ~x2(0) = ~x0.
Integrating we see that both solutions satisfy the equation

~xi(t) = ~x0 +

∫ t

0

~v(~xi(τ))dτ , i = 1, 2 .

Hence, noting that the initial condition drops out, we get

‖~x1(t)− ~x2(t)‖ = ‖
∫ t

0

~v(~x1(τ))dτ −
∫ t

0

~v(~x2(τ))dτ‖ = ‖
∫ t

0

[~v(~x1(τ))− ~v(~x2(τ))]dτ‖

Using the Minkowski inequality which is essentially the triangle inequality we get

‖~x1(t)− ~x2(t)‖ ≤
∫ t

0

‖~v(~x1(τ))− ~v(~x2(τ))‖dτ

and using the Lipschitz condition

‖~x1(t)− ~x2(t)‖ ≤ L

∫ t

0

‖~x1(τ))− ~x2(τ)‖dτ .

and this holds for all t as long as the solutions exist. If t < T we have that

‖~x1(t)− ~x2(t)‖ ≤ L

∫ t

0

‖~x1(τ))− ~x2(τ)‖dτ ≤ L

∫ T

0

‖~x1(τ))− ~x2(τ)‖dτ

This inequality implies that for all t ≤ T that

‖~x1(t)− ~x2(t)‖ ≤ LTM(T )
1
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where we set M(T ) = max[0,T ] ‖~x1(t)− ~x2(t)‖. Hence we also have that

M(T ) ≤ LTM(T )

and if we choose T such that LT < 1 it follows that M(T ) = 0. Hence the two solution
coincide on the time interval [0, T ]. Choosing ~x(T ) as the new initial condition the solution
must coincide on the interval [T, 2T ] also and so on. We can argue the same way that for
negative times the solutions have to coincide. �

2. Some remarks about the eAt

Recall that we defined the exponential of a matrix eAt by

eAt =
∞∑
n=0

Antn

n!
.

Here are some facts

Theorem 2.1. We have

eAteAs = eA(t+s)

for all s, t ∈ R.

Proof. Pick any initial condition ~x0. The function

~x(t) = eA(t+s)~x0

is a solution of the equation~̇x = A~x. This follows from

d

dt
eA(t+s) = AeA(t+s) .

Further the function ~y(t) = eAteAs~x0 is also a solution of the equation~̇x = A~x. moreover, for
t = 0 we have that ~x(0) = eAs~x0 = ~y(0). By uniqueness ~x((t) = ~y(t) and thus

eAteAs~x0 = eA(t+s)~x0

for all ~x0. Since ~x0 is arbitrary this proves the theorem. �

An interesting consequence of this theorem is that eAt is invertible for all t.

eAteA(−t) = eA(t−t) = I .

3. One parameter families of matrices

We say that a family of n× n matrices P (t) is a one parameter family if

P (0) = I

and for all t, s ∈ R,

P (t)P (s) = P (t+ s) .

We shall only consider one parameter families that are differentiable.
A particularly useful idea is to consider one parameter families of rotations R(φ). These

are matrices that satisfy R(φ)TR(φ) = I. First we compute the derivative

d

dφ
R(φ) = lim

ε→0

R(φ+ ε)−R(φ)

ε
= lim

ε→0

R(ε)− I
ε

R(φ) = ΩR(φ)
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where we denote

Ω = lim
ε→0

R(ε)− I
ε

=
d

dφ
R(0) .

The matrix Ω is not arbitrary. Indeed, differentiating

d

dφ
IRT (φ)R(φ) =

d

dφ
I = 0

and bu the product rule
d

dφ

∣∣∣
φ=0

IRT (φ)R(φ) = ΩT + Ω

and we learn that Ω must be a skew symmetric matrix,

ΩT = −Ω .

So far this worked in arbitrary dimensions. We specialize to three dimension and write the
general skew symmetric matrix as

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


note the interesting fact that

Ω~x = ~ω × ~x .
We also note that Ω~ω = 0. Recall that we have the equation

R′(φ) = ΩR(φ)

and this allows us to compute R(φ) explicitly. We shall assume that the vector ~ω is normalized.
We have to compute

eΩφ =
∞∑
n=0

Ωnφn

n!

Here are some computations:

Ω2 =

 −ω2
2 − ω2

3 ω1ω2 ω1ω3

ω2ω1 −ω2
3 − ω2

1 ω2ω3

ω3ω1 ω3ω2 −ω2
1 − ω2

3


which can be written as

Ω2 = −I + ~ω~ωT .

Here we use that ~ω is a unit vector. Thus we can start a little table:

Ω ,Ω2 = −I + ~ω~ωT ,Ω3 = −Ω ,Ω4 = −Ω2 . . .

Thus it makes sense to split

eΩφ =
∞∑
m=0

Ω2mφ2m

(2m)!
+
∞∑
m=0

Ω2m+1φ2m+1

(2m+ 1)!

into even and odd powers. We have that

Ω2m+1 = (−1)mΩ
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and hence the second sum reduces to
∞∑
m=0

Ω2m+1φ2m+1

(2m+ 1)!
= Ω

∞∑
m=0

(−1)mφ2m+1

(2m+ 1)!
= Ω sinφ .

For the even sum have to be careful noting that for m = 1, 2, . . .

Ω2m = (−1)m(I − ~ω~ωT ) .

For m = 0 we have the identity which we write

I = I − ~ω~ωT + ~ω~ωT

and get that
∞∑
m=0

Ω2mφ2m

(2m)!
= ~ω~ωT + (I − ~ω~ωT )

∞∑
m=0

(−1)mφm

(2m)!

which equals
~ω~ωT + (I − ~ω~ωT ) cosφ .

To summarize, we have shown that

eΩφ = cosφI + ~ω~ωT (1− cosφ) + Ω sinφ

Let’s note a few things: The vector ~ω is an eigenvector for this matrix with eigenvalue 1. This
is the axis of rotation. Take

~ω =

 0
0
1


i.e, the z axis. Then we get the matrix cosφ 0 0

0 cosφ 0
0 0 1

+

 0 −1 0
1 0 0
0 0 0

 sinφ =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1


which is precisely a rotation in the positive direction by an angle φ. To summarize:

Theorem 3.1. The rotation about the ~ω axis by an angle φ is given by

R(φ) = cosφI + (1− cosφ)~ω~ωT + Ω sinφ ,

in particular
R(φ)~x = cosφ~x+ (1− cosφ)(~ω · ~x)~ω + sinφ(~ω × ~x) .

This is Euler’s formula. Because
Ω2 + I = ~ω~ωT

Euler’s formula canals be written in the form

R(φ) = cosφI + (1− cosφ)(Ω2 + I) + Ω sinφ = I + (1− cosφ)Ω2 + sinφΩ

Note that the angle is any value between 0 and 2π. If φ < 0 we may replace φ by −φ which
keeps the sign of the cosine function fixed but changes the sign of the sign function. Thus if,
additionally we reverse the direction of ~ω we get back the same rotation. Needless to say that
the rotation by an angle φ = 0 or φ = 2π is the identity. Also note that in terms of R(φ) we
have that

1

2
[R(φ) +R(φ)T ] = cosφI + (1− cosφ)~ω~ωT
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and
1

2
[R(φ)−R(φ)T ] = Ω sinφ

4. A purely algebraic derivation of Euler’s formula

Our previous result concerns solution of the differential equation R′(φ) = ΩR(φ). Suppose
now that you are given an arbitrary rotation M . Can we find φ and Ω so that

M = I + (1− cosφ)Ω2 + sinφΩ ?

To be more specific we have the following theorem.

Theorem 4.1. Let M be a 3× 3 rotation. Define

cosφ =
TrM − 1

2
.

and

Ω =
1

2 sinφ
[M −MT ]

provided that φ 6= 0, π, 2π. Then

M = M = I + (1− cosφ)Ω2 + sinφΩ .

For φ = 0, 2π we have that M = I and for φ = π

M = I + 2Ω2 ,

and hence, Euler’s formula holds in these cases as well.

Recall that a 3 × 3 matrix M is a rotation if it satisfies MTM = I and detM = +1. We
would like to show that there exist a unit vector ~ω and an angle φ, 0 ≤ φ ≤ 2π such that

M = cosφI + (1− cosφ)~ω~ωT + Ω sinφ .

As usual

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

We first start with a simple Lemma:

Lemma 4.2. Let M be a rotation in three space, i.e., MTM = I and detM = +1. Then the
matrix M must have the eigenvalue 1. Moreover, the other two eigenvalues must be of the
form e±iφ for some 0 ≤ φ ≤ 2π.

Proof. To see this consider

det(M − I) = detMTdet(M − I) = detMT (M − I)

= det(I −MT ) = det(I −M)T = det(I −M) = −det(M − I) .

Hence det(M − I) = 0 and 1 is an eigenvalue. If we denote the other two eigenvalues by λ1

and λ2 we must have that λ1 + λ2 + 1 = TrM and λ1λ2 = 1 (Why?) Hence

λ1 + λ2 = TrM − 1 , λ1λ2 = 1 .

The best way to solve these equations is to note that −3 ≤ TrM ≤ 3 (Why?) Hence we may
define

cosφ =
TrM − 1

2
,
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and we have to solve the equations λ1 + λ2 = 2 cosφ, λ1λ2 = 1. We easily find that λ1 = eiφ

and λ2 = e−iφ. Thus we have the eigenvalues eiφ, e−iφ, 1. �

Let us assume that φ 6= 0, π, 2π. These cases we deal with later. Recall that

cosφ =
TrM − 1

2
,

and define

Ω =
1

2 sinφ
[M −MT ]

Note that this suggests itself from Euler’s formula (Why?). We have to check that

M = I + (1− cosφ)Ω2 + sinφΩ =: R

Cayley’s theorem tells us that

(M − I)(M − eiφI)(M − e−iφI) = 0

and developing the products yields

M3 − (1 + 2 cosφ)M2 + (1 + 2 cosφ)M − I = 0 .

Now

I + (1− cosφ)Ω2 + sinφΩ = I +
1− cosφ

4 sin2 φ
[M −MT ]2 + sinφ

1

2 sinφ
[M −MT ]

= I +
1

4(1 + cosφ)
[M −MT ]2 +

1

2
[M −MT ] .

We further have that
[M −MT ]2 = M2 +M2T − 2I

and by Cayley’s theorem

M2 = (1 + 2 cosφ)M − (1 + 2 cosφ)I +MT , M2T = (1 + 2 cosφ)MT − (1 + 2 cosφ)I +M

so that
M2 +M2T − 2I = 2(1 + cosφ)[M +MT ]− 4(1 + cosφ)I

Thus,

R =
1

2
[M +MT ] +

1

2
[M −MT ] = M .

The remaining cases are easily dealt with. Assume that φ = 0 or 2π. Then

TrM = 3 .

Now the matrix M is of the form
[~u1, ~u2, ~u3]

all of them being unit vectors. The trace, therefore is u11 + u22 + u33 = 3 since each of these
numbers is between −1 and 1 they all must be equals to 1. This means that the rotation
matrix must be the identity matrix. The case φ = π implies that −1 must be a two fold
eigenvalue. From this we get three facts: M2 = I and hence M = MT and M + I has a two
dimensional null space. Set

P =
M + I

2
and note that

P 2 = P , P T = P
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Hence P projects the three dimensional space onto a one dimensional space and therefore it
must be of the form

P = ~ω~ωT

for some unit vector ~ω. Thus,

M = −I + 2~ω~ωT = I + 2Ω2

which is what we wanted to show.


