
THE DISCRETE FOURIER TRANSFORM

1. Roots of 1

First a little review about complex numbers, namely roots of 1. You know of course that
the equation x2 = 1 has two roots, +1 and −1. If we consider the equation x4 = 1 and look
for solution in the complex domain we find the four roots 1, i,−1,−i where you recall that
i2 = −1. Thus we can factor

x4 − 1 = (x− 1)(x− i)(x+ 1)(x+ i) .

The roots of the equation x3 − 1 = 0 are given by 1, −1+i
√
3

2
, −1−i

√
3

2
. and hence

x3 − 1 = (x− 1)(x− −1 + i
√

3

2
)(x+

1 + i
√

3

2
) .

Things become much clearer if we jot down these points in the complex plane. Th roots of
the equation x4 − 1 = 0 are on the unit circle and are the corners of a square and the roots
x3 − 1 = 0 are also on the unit circle and are the corners of an equilateral triangle.

Using a bit of trigonometry we find that the roots of x4 − 1 = 0 can be written as

1 = cos 0 + i sin 0 = ei0 , i = cos(π/2) + i sin(π/2) = eiπ/2 ,

−1 = cos(π) + i sin(π) = eiπ , −i = cos(3π/2) + i sin(3π/2) = ei3π/2 .

and likewise, the roots of the equation x3 − 1 = 0 can be written as

1 = cos 0 + i sin 0 = ei0 ,
−1 + i

√
3

2
= cos(2π/3) + i sin(2π/3) = ei2π/3 ,

−1− i
√

3

2
= cos(4π/3) + i sin(4π/3) = ei4π/3 .

For the general equation xn − 1 = 0 we get the roots

1 , e2πi
1
n , e2πi

2
n , e2πi

3
n , . . . , e2πi

n−1
n .

To abbreviate the notation we set

ωn = e2πi
1
n

and can write the set of roots as

K ′ = {1 , ωn , ω2
n , ω

3
n . . . , ω

n−1
n } .

The following observation is important for what follows: If we multiply each element of K ′

by ωn we get the same set back. In fact multiplying each element of K ′ in the order given
above by ωn permutes these elements cyclically.
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2. The permutation matrix T

The n × n matrix T is is the matrix that maps the vector [x1, x2, . . . , xn] to the vector
[xn, x1, x2, . . . , xn−1]. The matrix T can be written as

T =



0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 0 . . . 1 0


it is clear that T n = I. To compute the eigenvalues of T we have several avenues. One is
to compute the characteristic polynomial, which is a bit tedious, but there is a much better
way by systematically ‘guessing’ the eigenvectors. One obvious one is the vector consisting of
1s. Let us call it ~v0. Another, which gets us closer to the idea is the vector, call it ~v1, whose
entries are 1, ωn, ω

,
n . . . , ω

n−1
n . Note that the vector T~v1 consists of the vector whose entries

are ωn−1n , 1, ωn, . . . , ω
n−2
n . If we recall that ωn−1n = ω−1n we get that T~v1 = ω−1n ~v1. Hence we

see that ~v1 is another eigenvector. It is complex and obviously linearly independent from the
vector ~v0. Let us pause for the moment and look at the structure of these two vectors. The
second had entries that are powers of the root of 1 given by ωn. The first vector is similar it
is can be thought of as consisting of powers of another root of 1, namely 1. Hence we may
continue and consider the vector ~v2 whose entries are given by the powers of ω2

n. That is the
vector is

~v2 =



1
ω2
n

(ω2
n)2

(ω2
n)3

.

.
(ω2

n)n−1


.

Once more

T~v2 =



(ω2
n)n−1

1
ω2
n

(ω2
n)2

(ω2
n)3

.

.
(ω2

n)n−2


= (ω2

n)n−1



1
ω2
n

(ω2
n)2

(ω2
n)3

.

.
(ω2

n)n−1


= (ω2

n)−1~v2 .

Continuing this way we find that the eigenvalues of T are given by 1, ωn, ω
2
n, · · · , ωn−1n and the

eigenvectors arranged into a matrix are given by

Fn =


1 1 1 1 . . . 1
1 ωn ω2

n ω3
n . . . ωn−1n

1 ω2
n (ω2

n)2 (ω3
n)2 . . . (ωn−1n )2

. . . . . . . .
1 ωn−1n (ω2

n)n−1 (ω3
n)n−1 . . . (ωn−1n )n−1

 ,
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1 1 1 1 . . . 1
1 ωn ω2

n ω3
n . . . ωn−1n

1 ω2
n ω4

n ω6
n . . . ω

2(n−1)
n

. . . . . . . .

1 ωn−1n ω
2(n−1)
n ω

3(n−1)
n . . . ω

(n−1)2
n


We call this the Fourier matrix. Lets work all this out when n = 4. The roots are, as we
have seen, 1, i, i2, i3, i4 or 1, i,−1,−i. Then the matrix of eigenvectors is given by

1 1 1 1
1 i i2 i3

1 (i2) (i2)2 (i2)3

1 (i3) (i3)2 (i3)3

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


Note that the column vectors of this matrix are orthogonal with respect to the inner product
and hence, normalizing these vectors, we get

U =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , (1)

a unitary matrix. One computes easily that TU = UD where

D =


1 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 i


3. Why discrete Fourier transform

We stay with the four dimensional situation we talked about t=in the previous section. We
have seen that

T = UDU∗

and one easily computes that

U∗ =
1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 ,

noting that UT = U . The four eigenvectors which are the column vectors in U we denoted by
~v0, ~v1, ~v2, ~v3. They are orthonormal with respect to the inner product

〈~z, ~w〉 =
∑

ziwi .

Given and vector ~x real or otherwise, we compute the Fourier Coefficients

〈~v0, ~x〉 , 〈~v1, ~x〉 , 〈~v2, ~x〉 , 〈~v3, ~x〉
then

~x = 〈~v0, ~x〉~v0 + 〈~v1, ~x〉~v1 + 〈~v2, ~x〉~v2 + 〈~v3, ~x〉~v3
then

T~x = 〈~v0, ~x〉~v0 − i〈~v1, ~x〉~v1 − 〈~v2, ~x〉~v2 + i〈~v3, ~x〉~v3 .
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4. Fast Fourier transform

The Fourier matrix is not sparse and hence to compute Fn~x it takes about n2 operations.
We shall show by arranging the computation in a clever way, that it takes much fewer steps.
To describe the result we set n = 2k.

Theorem 4.1. Let ωn = e
2πi
n with n = 2k. One can calculate Fn~x for any vector ~x ∈ Cn in

4 · 2kk = 4n log2(n) operations.

Consider the case where n = 2m. Given an arbitrary n vector ~x. Write it in the form
~x = ~x0 and ~x1 where ~x0 contains only the entries of ~x with even index and likewise ~x1 the
entries with odd index. It we write ~y0 = [x0, x2, . . . , x2(m−1)] and ~y1 = [x1, x3, . . . , x2m−1] then
we can write the vector [

~y0
~y1

]
= P~x

where P is the permutation matrix that maps the indices (0, 2, . . . , 2(m−1)) to (0, 1, . . . ,m−1)
and the indices (1, 2, . . . 2m− 1) to the indices (m, . . . , 2m− 1). The point now is that

[F2m~x]j =
2m−1∑
`=0

ωj`2mx` =
m−1∑
`=0

ωj2`2mx2` +
m−1∑
`=0

ω
j(2`+1)
2m x2`+1

=
m−1∑
`=0

ωj`mx2` + ωj2m

m−1∑
`=0

ωj`mx2`+1

using that

ω2j`
2m = e

2πi2l`
2m = e

2πil`
m = ωj`m .

We can rewrite this using the vectors ~y0 and ~y1 (which are m vector) as

[F2m~x]j = [Fm~y0]j + ωj2m[Fm~y1]j .

As matrices we can write this as [
I Dm

I −Dm

] [
Fm 0
0 Fm

]
where Dm is the diagonal matrix with the elements 1, ωm, ω

2
m, . . . , ω

m−1
m on the diagonal. These

entries cover the indices j = 0, . . . ,m − 1. The when j ≥ m, then ωj2m = −ωj−m2m and hence
the negative sign in front of Dm in the second row. Hence we have that

F2m =

[
I Dm

I −Dm

] [
Fm 0
0 Fm

]
P

Computing P~x does not use any operations, we just group the even indexed and odd
indexed elements together. This is achieved by a suitable input routine. Let c(m) be the
smallest number of steps to compute Fm~y. That gives us 2c(m) steps to compute[

Fm 0
0 Fm

]
P~x

To compute DmFm that takes another m steps, because Dm is diagonal. Hence we need
2c(m) + m steps to compute F2m~x. In other words, if c(m) denotes the smallest number of
steps to compute Fm~y then

c(2m) ≤ 2c(m) +m .



THE DISCRETE FOURIER TRANSFORM 5

Suppose we pick n = 2k then c(2k) ≤ 2c(2k−1) + 2k−1 This leads to a recursion which can be
solved with the result that

c(2k) ≤ 2ka0 + k2k−1

Here a0 is the number of steps to compute the Fourier transform for a two vector which takes
two steps. Thus, if we stick n back in, we get that the multiplication of the Fourier matrix
Fn with an arbitrary vector takes

n(a0 +
1

2
log2 n)

step. If we choose n = 220 which about a million by million matrix, it takes about 106(a0 +10)
which should be compared with the naive computation which would give 1012.

5. Application to differential equations

Consider the system
d2xi
dt2 i

= ω2(xi−1 − 2xi + xi+1)

where i = 1, . . . , N with the convention that N + 1 ≡ 1. If we write this in vector form we
get that

d2

dt2
~X = ω2[T − 2I + T−1] ~X

As an example, take N = 4. Then we get the equations

d2x1
dt2 i

= ω2(x4 − 2x1 + x2) ,

d2x2
dt2 i

= ω2(x1 − 2x2 + x3) ,

d2x3
dt2 i

= ω2(x2 − 2x3 + x4) ,

d2x4
dt2 i

= ω2(x3 − 2x4 + x1) .

We have diagonalized T . To stay with this example, we get the eigenvalues


