THE DISCRETE FOURIER TRANSFORM

1. Roots of 1

First a little review about complex numbers, namely roots of 1. You know of course that the equation $x^2 = 1$ has two roots, +1 and -1. If we consider the equation $x^4 = 1$ and look for solution in the complex domain we find the four roots 1, i, -1, -i where you recall that $i^2 = -1$. Thus we can factor

$$x^4 - 1 = (x - 1)(x - i)(x + 1)(x + i) .$$

The roots of the equation $x^3 - 1 = 0$ are given by $1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 - i\sqrt{3}}{2}$. and hence

$$x^{3} - 1 = (x - 1)(x - \frac{-1 + i\sqrt{3}}{2})(x + \frac{1 + i\sqrt{3}}{2})$$
.

Things become much clearer if we jot down these points in the complex plane. Th roots of the equation $x^4 - 1 = 0$ are on the unit circle and are the corners of a square and the roots $x^3 - 1 = 0$ are also on the unit circle and are the corners of an equilateral triangle.

Using a bit of trigonometry we find that the roots of $x^4 - 1 = 0$ can be written as

$$1 = \cos 0 + i \sin 0 = e^{i0}$$
, $i = \cos(\pi/2) + i \sin(\pi/2) = e^{i\pi/2}$,

$$-1 = \cos(\pi) + i\sin(\pi) = e^{i\pi}$$
, $-i = \cos(3\pi/2) + i\sin(3\pi/2) = e^{i3\pi/2}$.

and likewise, the roots of the equation $x^3 - 1 = 0$ can be written as

$$1 = \cos 0 + i \sin 0 = e^{i0} , \frac{-1 + i\sqrt{3}}{2} = \cos(2\pi/3) + i \sin(2\pi/3) = e^{i2\pi/3} ,$$

$$\frac{-1 - i\sqrt{3}}{2} = \cos(4\pi/3) + i\sin(4\pi/3) = e^{i4\pi/3}.$$

For the general equation $x^n - 1 = 0$ we get the roots

$$1 , e^{2\pi i \frac{1}{n}}, e^{2\pi i \frac{2}{n}}, e^{2\pi i \frac{2}{n}}, \dots, e^{2\pi i \frac{n-1}{n}}.$$

To abbreviate the notation we set

$$\omega_n = e^{2\pi i \frac{1}{n}}$$

and can write the set of roots as

$$K' = \{1 , \omega_n , \omega_n^2 , \omega_n^3 \dots , \omega_n^{n-1} \} .$$

The following observation is important for what follows: If we multiply each element of K' by ω_n we get the same set back. In fact multiplying each element of K' in the order given above by ω_n permutes these elements cyclically.

2. The permutation matrix T

The $n \times n$ matrix T is is the matrix that maps the vector $[x_1, x_2, \ldots, x_n]$ to the vector $[x_n, x_1, x_2, \ldots, x_{n-1}]$. The matrix T can be written as

$$T = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{bmatrix}$$

it is clear that $T^n=I$. To compute the eigenvalues of T we have several avenues. One is to compute the characteristic polynomial, which is a bit tedious, but there is a much better way by systematically 'guessing' the eigenvectors. One obvious one is the vector consisting of 1s. Let us call it \vec{v}_0 . Another, which gets us closer to the idea is the vector, call it \vec{v}_1 , whose entries are $1, \omega_n, \omega_n, \ldots, \omega_n^{n-1}$. Note that the vector $T\vec{v}_1$ consists of the vector whose entries are $\omega_n^{n-1}, 1, \omega_n, \ldots, \omega_n^{n-2}$. If we recall that $\omega_n^{n-1} = \omega_n^{-1}$ we get that $T\vec{v}_1 = \omega_n^{-1}\vec{v}_1$. Hence we see that \vec{v}_1 is another eigenvector. It is complex and obviously linearly independent from the vector \vec{v}_0 . Let us pause for the moment and look at the structure of these two vectors. The second had entries that are powers of the root of 1 given by ω_n . The first vector is similar it is can be thought of as consisting of powers of another root of 1, namely 1. Hence we may continue and consider the vector \vec{v}_2 whose entries are given by the powers of ω_n^2 . That is the vector is

$$\vec{v}_2 = \begin{bmatrix} 1 \\ \omega_n^2 \\ (\omega_n^2)^2 \\ (\omega_n^2)^3 \\ \vdots \\ (\omega_n^2)^{n-1} \end{bmatrix}.$$

Once more

$$T\vec{v}_{2} = \begin{bmatrix} (\omega_{n}^{2})^{n-1} \\ 1 \\ \omega_{n}^{2} \\ (\omega_{n}^{2})^{2} \\ (\omega_{n}^{2})^{3} \\ \vdots \\ (\omega_{n}^{2})^{n-2} \end{bmatrix} = (\omega_{n}^{2})^{n-1} \begin{bmatrix} 1 \\ \omega_{n}^{2} \\ (\omega_{n}^{2})^{2} \\ (\omega_{n}^{2})^{3} \\ \vdots \\ (\omega_{n}^{2})^{n-1} \end{bmatrix} = (\omega_{n}^{2})^{-1}\vec{v}_{2}.$$

Continuing this way we find that the eigenvalues of T are given by $1, \omega_n, \omega_n^2, \cdots, \omega_n^{n-1}$ and the eigenvectors arranged into a matrix are given by

$$F_{n} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \dots & \omega_{n}^{n-1} \\ 1 & \omega_{n}^{2} & (\omega_{n}^{2})^{2} & (\omega_{n}^{3})^{2} & \dots & (\omega_{n}^{n-1})^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \omega_{n}^{n-1} & (\omega_{n}^{2})^{n-1} & (\omega_{n}^{3})^{n-1} & \dots & (\omega_{n}^{n-1})^{n-1} \end{bmatrix},$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_n & \omega_n^2 & \omega_n^3 & \dots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \dots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \dots & \omega_n^{(n-1)^2} \end{bmatrix}$$

We call this the **Fourier matrix**. Lets work all this out when n = 4. The roots are, as we have seen, $1, i, i^2, i^3, i^4$ or 1, i, -1, -i. Then the matrix of eigenvectors is given by

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & (i^2) & (i^2)^2 & (i^2)^3 \\ 1 & (i^3) & (i^3)^2 & (i^3)^3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

Note that the column vectors of this matrix are orthogonal with respect to the inner product and hence, normalizing these vectors, we get

$$U = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} , \tag{1}$$

a unitary matrix. One computes easily that TU = UD where

$$D = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & i \end{array} \right]$$

3. Why discrete Fourier transform

We stay with the four dimensional situation we talked about t=in the previous section. We have seen that

$$T = UDU^*$$

and one easily computes that

$$U^* = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} ,$$

noting that $U^T = U$. The four eigenvectors which are the column vectors in U we denoted by $\vec{v}_0, \vec{v}_1, \vec{v}_2, \vec{v}_3$. They are orthonormal with respect to the inner product

$$\langle \vec{z}, \vec{w} \rangle = \sum_{i} \overline{z}_{i} w_{i} .$$

Given and vector \vec{x} real or otherwise, we compute the Fourier Coefficients

$$\langle \vec{v}_0, \vec{x} \rangle$$
, $\langle \vec{v}_1, \vec{x} \rangle$, $\langle \vec{v}_2, \vec{x} \rangle$, $\langle \vec{v}_3, \vec{x} \rangle$

then

$$\vec{x} = \langle \vec{v}_0, \vec{x} \rangle \vec{v}_0 + \langle \vec{v}_1, \vec{x} \rangle \vec{v}_1 + \langle \vec{v}_2, \vec{x} \rangle \vec{v}_2 + \langle \vec{v}_3, \vec{x} \rangle \vec{v}_3$$

then

$$T\vec{x} = \langle \vec{v}_0, \vec{x} \rangle \vec{v}_0 - i \langle \vec{v}_1, \vec{x} \rangle \vec{v}_1 - \langle \vec{v}_2, \vec{x} \rangle \vec{v}_2 + i \langle \vec{v}_3, \vec{x} \rangle \vec{v}_3 \ .$$

4. Fast Fourier transform

The Fourier matrix is not sparse and hence to compute $F_n\vec{x}$ it takes about n^2 operations. We shall show by arranging the computation in a clever way, that it takes much fewer steps. To describe the result we set $n = 2^k$.

Theorem 4.1. Let $\omega_n = e^{\frac{2\pi i}{n}}$ with $n = 2^k$. One can calculate $F_n \vec{x}$ for any vector $\vec{x} \in \mathbb{C}^n$ in $4 \cdot 2^k k = 4n \log_2(n)$ operations.

Consider the case where n=2m. Given an arbitrary n vector \vec{x} . Write it in the form $\vec{x}=\vec{x}_0$ and \vec{x}_1 where \vec{x}_0 contains only the entries of \vec{x} with even index and likewise \vec{x}_1 the entries with odd index. It we write $\vec{y}_0 = [x_0, x_2, \dots, x_{2(m-1)}]$ and $\vec{y}_1 = [x_1, x_3, \dots, x_{2m-1}]$ then we can write the vector

$$\left[\begin{array}{c} \vec{y_0} \\ \vec{y_1} \end{array}\right] = P\vec{x}$$

where P is the permutation matrix that maps the indices $(0, 2, \ldots, 2(m-1))$ to $(0, 1, \ldots, m-1)$ and the indices $(1, 2, \ldots, 2m-1)$ to the indices $(m, \ldots, 2m-1)$. The point now is that

$$[F_{2m}\vec{x}]_j = \sum_{\ell=0}^{2m-1} \omega_{2m}^{j\ell} x_\ell = \sum_{\ell=0}^{m-1} \omega_{2m}^{j2\ell} x_{2\ell} + \sum_{\ell=0}^{m-1} \omega_{2m}^{j(2\ell+1)} x_{2\ell+1}$$
$$= \sum_{\ell=0}^{m-1} \omega_m^{j\ell} x_{2\ell} + \omega_{2m}^j \sum_{\ell=0}^{m-1} \omega_m^{j\ell} x_{2\ell+1}$$

using that

$$\omega_{2m}^{2j\ell} = e^{\frac{2\pi i 2l\ell}{2m}} = e^{\frac{2\pi i l\ell}{m}} = \omega_m^{j\ell} .$$

We can rewrite this using the vectors \vec{y}_0 and \vec{y}_1 (which are m vector) as

$$[F_{2m}\vec{x}]_j = [F_m\vec{y}_0]_j + \omega_{2m}^j [F_m\vec{y}_1]_j .$$

As matrices we can write this as

$$\left[\begin{array}{cc} I & D_m \\ I & -D_m \end{array}\right] \left[\begin{array}{cc} F_m & 0 \\ 0 & F_m \end{array}\right]$$

where D_m is the diagonal matrix with the elements $1, \omega_m, \omega_m^2, \ldots, \omega_m^{m-1}$ on the diagonal. These entries cover the indices $j = 0, \ldots, m-1$. The when $j \geq m$, then $\omega_{2m}^j = -\omega_{2m}^{j-m}$ and hence the negative sign in front of D_m in the second row. Hence we have that

$$F_{2m} = \left[\begin{array}{cc} I & D_m \\ I & -D_m \end{array} \right] \left[\begin{array}{cc} F_m & 0 \\ 0 & F_m \end{array} \right] P$$

Computing $P\vec{x}$ does not use any operations, we just group the even indexed and odd indexed elements together. This is achieved by a suitable input routine. Let c(m) be the smallest number of steps to compute $F_m\vec{y}$. That gives us 2c(m) steps to compute

$$\left[\begin{array}{cc} F_m & 0\\ 0 & F_m \end{array}\right] P\vec{x}$$

To compute $D_m F_m$ that takes another m steps, because D_m is diagonal. Hence we need 2c(m) + m steps to compute $F_{2m}\vec{x}$. In other words, if c(m) denotes the smallest number of steps to compute $F_m \vec{y}$ then

$$c(2m) \le 2c(m) + m .$$

Suppose we pick $n=2^k$ then $c(2^k) \leq 2c(2^{k-1}) + 2^{k-1}$ This leads to a recursion which can be solved with the result that

$$c(2^k) \le 2^k a_0 + k2^{k-1}$$

Here a_0 is the number of steps to compute the Fourier transform for a two vector which takes two steps. Thus, if we stick n back in, we get that the multiplication of the Fourier matrix F_n with an arbitrary vector takes

$$n(a_0 + \frac{1}{2}\log_2 n)$$

step. If we choose $n = 2^{20}$ which about a million by million matrix, it takes about $10^6(a_0 + 10)$ which should be compared with the naive computation which would give 10^{12} .

5. Application to differential equations

Consider the system

$$\frac{d^2x_i}{dt^2}_i = \omega^2(x_{i-1} - 2x_i + x_{i+1})$$

where $i=1,\ldots,N$ with the convention that $N+1\equiv 1$. If we write this in vector form we get that

$$\frac{d^2}{dt^2}\vec{X} = \omega^2 [T - 2I + T^{-1}]\vec{X}$$

As an example, take N=4. Then we get the equations

$$\frac{d^2x_1}{dt^2}_i = \omega^2(x_4 - 2x_1 + x_2) ,$$

$$\frac{d^2x_2}{dt^2}_i = \omega^2(x_1 - 2x_2 + x_3) ,$$

$$\frac{d^2x_3}{dt^2}_i = \omega^2(x_2 - 2x_3 + x_4) ,$$

$$\frac{d^2x_4}{dt^2}_i = \omega^2(x_3 - 2x_4 + x_1) .$$

We have diagonalized T. To stay with this example, we get the eigenvalues