
A SHORT SUMMARY OF VECTOR SPACES AND MATRICES

This is a little summary of some of the essential points of linear algebra we have covered
so far. If you have followed the course so far you should have no trouble understanding these
notes. I suggest that you flesh out this text with your own examples.

1. Solving linear equations

We are given an m×n matrix A and a vector ~b and consider the system of linear equations

A~x = ~b . (1)

The basic questions are:

a) Is there a solution?

b) Is there a solution for every ~b ∈ Rm?

c) If there is one, is it unique?

d) If it is not unique, how can we describe all of them?

The technical tool that we use to answer these questions is elimination which leads to the

row reduced echelon form R. More precisely, elimination for the augmented matrix [A|~b]
leads to [R|~c] where R is in row reduced echelon form. Each pivot is one, and above and below
a pivot there are only zeros. This form is unique, i.e., it does not depend on how you do the
elimination. I will assume that you know how to work the row reduction algorithm.
The set of solutions of (1) and of

R~x = ~c (2)

is the same.
The number of pivots is called the rank of the matrix A and denoted by r(A) or just r.

There are four spaces associated with the matrix A. The column space C(A) ⊂ Rm, the null
space N(A) ⊂ Rn, the row space which is the same as the column space of the transposed
matrix AT , C(AT ) ⊂ Rn and the null space N(AT ) ⊂ Rm. The column space C(A) consists
of all linear combinations of the column vectors and the null space consists of all vectors
~x ∈ Rn such that A~x = ~0. Note that C(A), N(AT ) are subspace of the same space Rm

and C(AT ), N(A) are subspaces of the same space Rn. Elimination does not change the row
space, and it does not change the null space of A. Hence we have

C(AT ) = C(RT ) , N(A) = N(R) .

The spaces C(A) and N(AT ) will change, however.
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The dimensions of these various spaces are related by

dimC(A) = r(A) = dimC(AT )

and

dimN(A) = n− r(A) , dimN(AT ) = m− r(A) .

These relations follow from the row reduced echelon form. Here is the argument: For ~b to be
in the column space it must be a linear combination of the column vectors of A = [~a1, . . . ,~an],
i.e., of the form

~b =
n∑

j=1

yj~aj ,

thus, the vector ~y = (y1, . . . , yn) is a solution of the equation (1). After row reduction this
equation transforms into

~c =
n∑

j=1

yj~rj

where ~rj are the column vectors of the matrix R. The y’s stay the same because the solutions
of (1) are the same as the ones of (2)! Thus, whenever, a set of column vectors of A are
linearly independent so are the corresponding vectors in the matrix R and conversely.
Thus, the dimensions of the column space of A and of R are the same. Not the spaces, but
the dimensions. The dimension of the column space of R equals the number of pivots, i.e.,
the rank of A. In fact the columns of R that contain a pivot are the basis vectors for C(R).
Therefore the corresponding columns in A, which we call the pivot columns of A, form a
basis for C(A) (Why?). Again, let me emphasize that C(R) 6= C(A). A little bit easier is the
argument for the row space C(AT ), since this space does not change and the rows in R that
contain a pivot form a basis for C(AT ). Hence dimeC(AT ) = r(A). The rest follows by noting
that the number of free variables is the dimension of the null space of A and this number plus
R yields the number of columns.

Now we can give some answers to the questions mentioned at the beginning. There exists

a solution if and only if ~b ∈ C(A). This is a bit of a triviality but a usefull one, as we shall see

later. The equation(1) has a solution for every ~b ∈ Rm if an only if r(A) = m. This simply
expresses that fact the C(A) being a subspace of Rm and having dimension m must be equals
to Rm.

Recall that the n×m matrix B is a right inverse for the matrix A if AB = Im where Im is
the identity matrix in Rm. Note that a right inverse exists if and only if (1) has a solution for

every ~b ∈ Rm. If the right inverse B exists, then B~b solves A(B~b) = Im~b = ~b. So we have a

solution for every ~b ∈ Rm. To see the converse, we know, by assumption, that A~xi = ~ei has a
solution for every ei ∈ Rm. The solution might not be unique but that does not matter. From
the matrix B = [~x1, . . . , ~xm] and note that AB = Im. Another way of saying this is that A
has a right inverse if and only if r(A) = m.

To make further progress we observe: Every solution of (1) is of the form ~xp + ~z where ~z is

a solution of the homogeneous equation A~z = ~0 and ~xp is any particular solution of (1).

Thus, we find that the solution is unique if and only if N(A) = {~0} which is the same as
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dimN(A) = 0. In this case r(A) = n. If the solution is not unique we can describe all the
solutions of the equation (1). Pick any basis of N(A), {~v1, . . . , ~vn−r}. The complete solution
set of (1) is then given by

~xp +
n−r∑
j=1

tj~vj

where t1, . . . , tn−r are real numbers and ~xp is any particular solution. A basis for N(A) can
be found by solving the row reduced system in terms of the free variables.

The matrix A has a left inverse if the exists an n×m matrix C with CA = In. The matrix
A has a left inverse if and only if N(A) = {~0}. If A has a left inverse C, then applying C to

the equation A~x = 0 yields ~x = CA~x = 0. Hence N(A) = {~0}. Conversely, if N(A) = {~0}
then r(A) = n. This means that the equation AT~y = ~c has a solution for every ~c ∈ Rn. Hence,
AT has a right inverse ATD = In and therefore DT is a left inverse of A. To summarize, the
matrix A has a left inverse if and only if dimN(A) = 0.

Recall that the matrix A is invertible if it has a right and a left inverse in which case the
two matrices B and C are the same. Thus, for A invertible it is necessary and sufficient that
both, n = m and r(A) = n hold for the matrix A. Equivalently, A is invertible if and only
if n = m and dimN(A) = 0. Another way of saying this is, that the matrix A is invertible if

and only if the equation (1) has a unique solution for any ~b ∈ Rm. For this to be possible we
necessarily need that m = n. Still another way of characterizing an invertible matrix is by
saying that the column vectors are linearly independent, since n such vectors form for a basis
for Rn.

You see that this part of linear algebra is about formulating the same statement in many
different ways. This somewhat confusing but useful. Think of it as acquiring a language.

2. Least square approximations

So far we argued only via the dimensions of the various subspaces, but they have special
positions. Recall that the orthogonal complement of a subspace V ⊂ Rn consists of all
vectors in Rn that are perpendicular to every vector in V . The orthogonal complement is
denoted by V ⊥. V and V ⊥ have only the zero vector in common and we have that

dimV + dimV ⊥ = n .

Moreover, V ⊥
⊥

= V . The orthogonal complement of the row space of A consists of all vectors
that are perpendicular to all row vectors of A and hence to all column vectors of AT . Hence

C(AT )⊥ = N(A) , N(A)⊥ = C(AT )

and

C(A)⊥ = N(AT ) , N(AT )⊥ = C(A) .

With these concepts one can formulate some interesting problems. What is the distance of

the tip of a vector ~b ∈ Rn to a subspace V ⊂ Rn, or better what is vector in V that is closest

to ~b. If ~b is in V then, of course, ~b itself is the answer and the distance is zero. So we assume

that ~b /∈ V . Suppose we have a vector ~v ∈ V with the property that ~b − ~v is perpendicular
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to V , or what amounts to the same, that ~b − ~v ∈ V ⊥. I claim that ‖~b − ~v‖ is the distance

between V and the tip of ~b. To see this, pick any other vector ~w ∈ V . Then, we write

‖~b− ~w‖2 = ‖(~b− ~v) + (~v − ~w)‖2 = ‖~b− ~v‖2 + ‖~v − ~w)‖2 + 2(~b− ~v) · (~v − ~w)

where the last term vanishes, since (~v − ~w) ∈ V and (~b− ~v) ∈ V ⊥. Hence,

‖~b− ~w‖2 = ‖~b− ~v‖2 + ‖~v − ~w)‖2 ≥ ‖~b− ~v‖2

with equality only if ~w = ~v. Thus, we have to find ~v with ~b − ~v ⊥ V in order to solve our
distance problem.

This can be readily solved. Pick any basis ~v1, . . . , ~vk in V . The vector ~v in question must be
of the form ~v =

∑k
j=1 xk~vk. We can reformulate this by using the matrix

A = [~v1, . . . , ~vk] .

so that ~v = A~x. Now ~b− A~x ⊥ V = C(A) and hence ~b− A~x ∈ N(AT ) so that

AT (~b− A~x) = 0

or
ATA~x = AT~b .

These are the normal equations. The always have a unique solution, in fact the matrix ATA
is invertible. It suffices to show that the column vectors of ATA are linearly independent. To
check this we solve ATA~y = 0 which means that A~y ∈ N(AT ). Moreover A~y ∈ C(A) and
hence A~y = 0. Since the column vectors of A are linearly independent, ~y = 0. The vector ~v
is now given by

~v = A(ATA)−1AT~b

and we set
PV = A(ATA)−1A

which is the orthogonal projection of Rn onto V . Note that PV does not depend on the
choice of basis. Why?

We have that
P T
V = PV

and
P 2
V = PV .

These observations are the foundations of the least square approximation. Imagine that a
data set is given by vectors in Rn and you would like to see that this data set fits onto some
lower dimensional subspace, e.g., a line. Very often this problem can be brought into the form

of seeking the least square approximation to a system A~x−~b. This is almost the problem

we solved above. The vector ~b is given as well as the matrix A. The column vectors, however,
do not in general form a basis for C(A), they may be linearly dependent. Moreover, we are

not primarily interested in the vector ~v ∈ C(A) that is closest to the vector ~b. Our interest is
in ~x. The normal equations are still valid

ATA~x = AT~b
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and this system of equation always has a solution, the right side is always in the column space
of AT and hence of the column space of ATA. The solution for ~x, however, need not be unique.
The error of the least square approximation is given by

‖A~x? −~b‖
where ~x? is any solution of the normal equations. One might think that this number depends
on which solution we choose, but this is not the case (Why?).


