
THE MIN-MAX PRINCIPLE

Let A be a symmetric n×n matrix. The eigenvalues are really and hence we can order them
λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) where we count them in their multiplicity. E.g., if A is 4×4 and
the eigenvalues are 1, 2, 3 and the multiplicity of 2 is two then we write 1 ≤ 2 ≤ 2 ≤ 3. We
denote the corresponding eigenvector by ~x1, . . . , ~xn and we choose them to be an orthonormal
basis of Rn.

You are used to compute the eigenvalues using the characteristic polynomial. For symmetric
matrices there is another way to achieve that, which is already implicit in the proof that any
symmetric matrix can be diagonalized. Here is an interesting theorem.

Theorem 0.1. Let A be a symmetric matrix. For any vector ~x with norm one, i.e., on the
unit sphere, consider the function

f(~x) = ~xTA~x .

Then the minimum of this function on the sphere is attained, i.e., there exists a vector ~x1 such
f(~x1) ≤ f(~x) for all ~x on the unit sphere. Moreover the vector ~x1 is an eigenvector and the
value f(~x1) is the corresponding eigenvalue.

Proof. The function f(~x) is a differentiable function on the sphere. Instead of looking at the
function f consider the function

~xTA~x

~xT~x
which is defined for all ~x 6= 0. Obviously both the numerator and the denominator are
differentiable. Any differentiable function is continuous and any continuous function on the
sphere attains its maximum and minimum. Denote the point where the minimum is attained
by ~x1, |~x1‖ = 1. Take any vector ~y ∈ Rn and consider the function

g(ε) =
(~x1 + ε~y)TA(~x1 + ε~y)

‖~x1 + ε~y‖2
.

This function is differentiable and satisfies g(ε) ≥ g(0). Hence, the derivative at ε = 0 has to
vanish and we compute the derivative to be

2~yTA~x1
‖~x1‖2

− (~xT1A~x1)2~y
T~x1

‖~x1‖4
= 0

Since ‖~x1‖ = 1 we have that

~yTA~x1 − f(~x1)2~y
T~x1 = 0

or

~yT [A~x1 − f(~x1)~x1] = 0

and since ~y is arbitrary

A~x1 = f(~x1)~x1

and we are done.
Here is another argument more in line with what you have learned in Calculus III. Assuming

the a minimizer exists, we use Lagrange multipliers to minimize ~xTA~x given the constraint
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‖~x‖2 = 1. we have that ∇~xTA~x = 2A~x , ∇‖~x|2 = 2~x so that at the minimum A~x = λ~x. Thus
the minimizing vector must be an eigenvector. �

Recall that whenever a subspace V is invariant under A, then its orthogonal complement
is also invariant under A. This is because A is symmetric. Thus, how do we find the second
eigenvalue? Just minimize the function over all vector ~x that are perpendicular to the vector
~x1! Continuing this way we recover all the eigenvalues Of course, in general we cannot find
the vector ~x1 precisely and therefore, we know the lowest eigenvalue only approximately.
Nevertheless this point of view is very useful.

As we said, computing eigenvalues is not easy and here is a first variational principle that
allows in principle to compute the eigenvalues within some accuracy. This principle goes back
to Courant and Hilbert and is called the min-max principle. Here is the description: Let
V ⊂ Rn be a k-dimensional subspace. Then we can compute (in principle)

max
~u∈V,‖~u|=1

~uTA~u .

Next we vary the subspace, keeping the dimension k fixed and set

µk(A) = min
V⊂Rn ,dimV=k

max
~u∈V,‖~u‖=1

~uTA~u .

Theorem 0.2. We have that

µk(A) = λk(A) , k = 1, 2, . . . , n .

Proof. We reduce the problem to proving two inequalities. First we show that µk(A) ≤ λk(A).
For this we pick as a subspace Vk the space spanned by the vector ~x1, . . . , ~xk. This space has
obviously the dimension k. Pick any vector ~u ∈ Vk which means that we can write it as

~u =
k∑

j=1

cj~xj

and if we assume that ~u is a unit vector we have that

1 = ~uT~u =
k∑

i,j=1

cicj~x
T
i ~xj =

k∑
j=1

c2j ,

and similarly

~uTA~u =
k∑

j=1

(A)λjc
2
j ≤ λk

k∑
j=1

c2j = λk(A)

because of the ordering of the eigenvalues. Hence

µk(A) ≤ max
~u∈Vk,‖~u‖=1

~uTA~u ≤ λk(A) .

To show the converse We pick any k-dimension subspace V ⊂ Rn. The space Wk ⊂ Rn

spanned by ~xk, ~xk+1, . . . , ~xn is a (n−k+1) dimensional subspace. Hence the subspace V ∩Wk

has a dimension at least one. Otherwise, if V ∩Wk = {~0} then any basis of V together with
the vectors ~xk, . . . , ~xn would yield n+ 1 linearly independent vectors in Rn which cannot be.
Hence there exists a nonzero vector ~u ∈ V ∩Wk of length one. We can write ~u =

∑n
j=k cj~xj

and hence

~uTA~u =
n∑

j=k

c2jλj(A) ≥ λk(A)
n∑

j=k

c2j = λk(A) .
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Hence we have shown that for any subspace V ⊂ Rn whose dimension is k

max
~u∈V,‖~u‖=1

~uTA~u ≥ λk(A)

and therefore
µk(A) = min

V⊂Rn ,dimV=k
max

~u∈V,‖~u‖=1
~uTA~u ≥ λk(A)

which finishes the proof. �

Corollary 0.3. Given two hermitean n × n matrices A and B, assume that for all ~z ∈ Cn,
~z∗A~z ≤ ~z∗B~z. Then the corresponding eigenvalues satisfy

λi(A) ≤ λi(B) , i = 1, . . . , n .

The proof is an exercise.
Here is another useful version of this principle. We state is for hermitean matrices since in

this case the eigenvalues are real and the proof is the same as the one for symmetric matrices.
All you have to recall is that the dot product is now replaced by the inner product

〈~z, ~w〉 =
n∑

i=1

ziwi .

Theorem 0.4. Let A be an n × n hermitean matrix, i.e., A∗ = A and denote by λ1 ≤ λ2,≤
· · · ≤ λn the eigenvalues and by ~x1, . . . , ~xn the corresponding eigenvectors. For k ≤ n pick any
k orthonormal vectors ~u1, . . . , ~uk and form the matrix

Bij = 〈~ui, A~uj〉 .
Denote by µ1, . . . , µk the eigenvalues of the matrix B arranged in increasing order. Then

λ1 ≤ µ1 , λ2 ≤ µ2 , . . . , λk ≤ µk .

This version of the min-max principle is especially useful. All one does is to come up with
a set of orthonormal trial vectors, computes the matrix B and its eigenvalues. These values
provide upper bounds to the actual eigenvalues of A.

Proof. First we make a little observation. Suppose that we are given k orthonormal vectors ~vj
and form the matrix Bij = ~v∗iA~vj. We have the eigenvalues µ1, . . . , µk and the corresponding

eigenvectors ~U1, . . . , ~Uk. Note that this vectors are in Ck and not in Cn. We may write B in
the form

C∗BC = D

where
C =

[
~U1, . . . , Uk

]
is a unitary matrix and D has the µjs in the diagonal. Hence for ` ≤ k

µ` =
∑
ij

C∗`iBijCj` = ~w∗`A~w`

where ~w` =
∑

i ~viCi` ∈ Cn. We also not that ~w∗`′A~w` = 0 if `′ 6= `. Consider the subspace of
Cn spanned by the vectors ~w1, . . . , ~w`. This is an ` dimensional subspace V of Cn. Pick any
vector ~w in this subspace V and write it as ~w =

∑
p dp ~wp. We compute

~w∗A~w =
∑̀
p=1

|dp|2µp ≤ µ`
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and
max

~w∈V,‖~w‖=1
~w∗A~w = µ` ,

just pick ~w = ~w`. Hence, by the previous theorem λ`(A) ≤ µ`. Thus, λ`(A) ≤ µ`, ` =
1, . . . , k. �

Another nice theorem is the following, attributed to Henri Poincaré.

Theorem 0.5. Let A be any hermitean n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · ·λn.
Consider the matrix B which one gets by removing the column j and the row j from A and
denote the eigenvalues by µ1 ≤ µ2,≤ · · ·µn−1. Then

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn .

In other words, the eigenvalues of A and B interlace.

Proof. By adding a constant multiple the identity matrix to A we may assume that the
eigenvalue of A are all strictly positive. To simplify the notation we assume thatB is created by
removing the last column and last row from A. The matrix B, being a sub matrix of A satisfies
the assumption of the previous theorem and hand we have that λi ≤ µi , i = 1, . . . , n − 1.
Hence the values µi > 0, i = 1, . . . , n − 1. Next we add a column and a row consisting of
zeros to B which turns B into an n × n matrix B̃ that has 0 as an additional eigenvalue.
Thus the eigenvalues of B̃ as 0 ≤ µ1 ≤ µ2 ≤ . . . µn−1. Take the subspace V spanned by the
first ` eigenvectors of A. By the Theorem 0.2 we have that 0 ≤ λ1 and µ`+1 ≤ λ`. Since ` is
arbitrary this proves the theorem.

�


