THE PERRON-FROBENIUS THEOREM

We state and prove here a simplified version of the Perron-Frobenius Theorem, that has
manifold applications.

Theorem 0.1. Let A be an nxn matrix with strictly positive matrixz elements. There exists an
ergenvalue Apax > 0 which s not degenerate and whose eigenvector xywax has strictly positive
components. Moreover, any other eigenvector x of A with non-negative entries is equal to
Tmax- Further, if X is any other eigenvalue of A (which may be complex), then |A| < Apax-

Let @ be the positive orthant in R™. Let x € ), x # 0 and set

E(r) = min (Az), :

We first start with a lemma.

Lemma 0.2. The function E(z) is bounded, in fact
E(z) < m]?XZam- .

Further, for any x € Q,x # 0 we have that
E(Az) > E(x)
with equality only if x satisfies Ax = E(x)x, i.e., x is an eigenvector.
Proof. The definition of F(z) is equivalent with the statement that E(x) is the largest number
such that
(Az); — E(x)z; >0,i=1,...,n.
To see that
E(Az) > E(x)
simply note that
[A(Az — E(x)x)]; >0,i=1,...,n
since (Ax); — E(x)x; > 0,i=1,...,n. This means that
A?1);
E(Azx) = miin ((A;;)l > E(z) .
Note that since A has strictly positive elements and x € () is not the zero vector we have that
Ax has strictly positive components. Now, suppose that x € @) is not an eigenvector of A.

Then, as noted above, (Ax); — E(x)z; > 0,7 =1,...,n and not all of them are equal to zero.
Hence

[A(Az — E(x)z)]; >0,i=1,...,n
with a strict inequality. Thus E(Ax) > E(z).
Finally to see that F(z) is bounded, note that for any given x € @,z # 0 we have that
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where z;, = max; z;. But then (Az), = >, arix; < (D, agi)xy so that

% < (Z i) -

Ty -
i

O

To gather some more information about E(z) we have to introduce the set ¥ which is the
intersection of () and the unit sphere in R™. The next step is the analytical part of the proof.
The key fact from analysis is that if a function is continuous on a compact set, then it attains
its maximum and minimum on that set. The problem is that F(z) may not be continuous on

the set X. Since the ratio @

. (Ax); . . .
that min; % could jump as one varies the vector x € () and one or more components vanish

during that process. Thus F is not continuous on ¥, but it is on A(X) as we shall show next.

is only defined for ¢ with z; non-zero. What can happen is

Lemma 0.3. Consider the set A(X), i.e., the image of the set ¥ under A. This set is closed
and bounded. Moreover, on this set A(X) the function E(x) is continuous.

Proof. The set X is closed and bounded and hence compact. Multiplication by a matrix is a
continuous operation and hence A(Y) is also compact. Since A has strictly positive matrix
elements, we have that

min(Az); >m; >0, i=1,...,n.
€Y

Hence E is continuous on A(X). O

Proof of the Theorem. The function E being continuous on A(3) and A(X) being compact,
attains its maximum on A(X). Moreover, since E(Az) > E(x) it also attains its maximum
on Y. Lets denote a vector where the maximum attained by z. We have that E(Az) > F(z)
and since F(z) is the maximum, we have that E(Az) = E(z). By the first lemma the vector z
must be an eigenvector. Moreover z has strictly positive components because Az = E(z)z and
the components of Az are strictly positive. We set A\yax := E(2). Note that A\yay is strictly
positive, for otherwise A would be the zero matrix.

Now let y be any eigenvector of A with eigenvalue \ which could be complex. Then taking
absolute values in the equation \y; = ; @ijy; we get using the triangle inequality

Mlyal < aijly; -
j

Hence 5 ]
A< min =220 = B(ly)) < Aa
3,|y:|#0 Y3
where we denote by |y| the vector that has the components |y;|,7 = 1,...,n. This proves that

any eigenvalue A must satisfy |A| < Apax.

We have to show that A,.. has geometric multiplicity one. Suppose that the exists x €
@, # 0 such that Ax = A\.cx. Then x must have strictly positive components. If x and z
are not proportional they span a two dimensional space and hence there are number a, b so
that the vector y := az + bx has a zero component. Then Ay = A,..y and as before taking
magnitudes

Amaclyi] < aijyj]
j
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and we conclude as before that

Amax < E(|y]) < Amax
and hence there must be equality. Because A\pax > E(Aly|) > E(|y]) = Amax the vector |y
must be an eigenvector, i.e., Aly| = A\nax|y|. But, this means that all the components of |y|
must be strictly positive contradicting the fact that y has a zero component.

What is left is to show that if Az = Az and x has non-negative components, then A = A.«
and z is a positive multiple of z. To prove this, we consider the transpose A7 which also has
strictly positive matrix elements. Hence we may apply the same reasoning and find a vector
w with strictly positive entries such that ATw = pw, u > 0. The claim is that g = Apax. To

see this we compute

pw’z = (ATw)" 2z = wh Az = Apaw” 2

and since w’z > 0 we have that 1 = A\nax. Let o be any eigenvector of A with non-negative

entries, i.e., (Az); = Ax;,i = 1,...,n. Then by the same reasoning, using that w has strictly
positive components, we find that w?x > 0 and hence

)\max =A.

Since the eigenvalue Ap., has geometric multiplicity one, the vector z must be a positive
multiple of z. O

We assumed that the matrix elements a;; are strictly positive and we can say a bit more.

Theorem 0.4. Suppose that Ay = Ay and |A\| = Anax. Here X\ may be complex and and y a
complex vector. Then y = cz where ¢ # 0 is in general a complex number. In other words, if
Ay = ANy and y is not proportional to z then |A| < Apax-

Proof. The reasoning is as before. We have
Amax yi = [Mwil < aiily|
J

from which we conclude as before that the vector |y| having the components |y;| is an eigen-
vector with non-negative entries with eigenvalue A, and hence proportional to z. Hence we

must have the equality
’Zaijyj| = Zaijij\ a=1,....n.
J J

The rest follows by an inductive application of the simple lemma below. 0

Lemma 0.5. Let a,b > 0. Then
la + €%b| = |a + b|
implies that € = 1.
Proof. We compute
la + €b|? = a® 4+ b? + 2abRe™® = a® + b* 4 2ab
from which we get that Re’” = 1. Since |e*’| = 1, we have that e = 1.



