TEST 2, MATH 3406 N, NOVEMBER 8, 2018

Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414.... State your work clearly, otherwise credit cannot be given. Likewise, write legibly!

Problem 1: Compute the eigenvalues and eigenvectors of the following matrices and decide whether they are diagonalizable.

a) (5 points)
$$\begin{bmatrix} 5 & 1 \\ -4 & 1 \end{bmatrix}$$

3 is a double eigenvalue and $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is up to scaling the only eigenvector. Hence the matrix cannot be diagonalized.

b) (**10 points**)
$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

The matrix is symmetric and hence can be diagonalized. 1 is an eigenvalue with eigenvector

$$\vec{v}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

The simples way to continue it to write the matrix as

$$-2I_3 + \left[\begin{array}{ccc}1\\1\\1\end{array}\right] \left[\begin{array}{cccc}1&1&1\end{array}\right]$$

We see that every vector orthogonal to \vec{v}_1 is an eigenvector with eigenvalue -2. E.g.,

$$\frac{1}{\sqrt{6}} \begin{bmatrix} 2\\-1\\-1 \end{bmatrix} , \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$

are together with \vec{v}_1 from an orthonormal basis.

One can also compute the characteristic polynomial and get $-(\lambda + 2)^2(\lambda - 1)$ and then the rest is the same as before.

Problem 2: (10 points) Solve the following system of equations. Write the solutions in the form z = a + ib, w = c + id where a, b, c, d are real.

$$(1+i)z + w = 1$$
$$z - (1-i)w = 1$$
$$, w = -\frac{i}{3}.$$

The solutions are $z=\frac{2-i}{3}$, $w=-\frac{i}{3}$

Problem 3: (10 points) Compute the eigenvalues and eigenvectors of the following matrix.

$$A = \begin{bmatrix} 4 & -3i \\ 3i & -4 \end{bmatrix}$$

The eigenvalues are 5 and -5. The corresponding eigenvectors

$$\frac{1}{\sqrt{10}} \left[\begin{array}{c} -3i\\1 \end{array} \right] \ , \ \frac{1}{\sqrt{10}} \left[\begin{array}{c} 1\\-3i \end{array} \right]$$

(5 points) Find a unitary matrix U that diagonalizes A. The matrix is

$$U = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} -3i & 1\\ 1 & -3i \end{array} \right]$$

Problem 4: (15 points) Find a_n given the three term recursion

$$a_{n+1} = 3a_n + 4a_{n-1}$$
, $n = 1, 2, \dots$, and $a_0 = 1$, $a_1 = 4$

 $\vec{X}_n = \left[\begin{array}{c} a_n \\ a_{n-1} \end{array}\right]$

 $\vec{X}_{n+1} = A\vec{X}_n$

We write

Then

where

$$A = \left[\begin{array}{cc} 3 & 4 \\ 1 & 0 \end{array} \right]$$

Eigenvalues and eigenvectors are

$$4, \begin{bmatrix} 4\\1 \end{bmatrix}; -1, \begin{bmatrix} 1\\-1 \end{bmatrix}$$

Note that the initial condition is $\vec{X}_1 = \begin{bmatrix} 4\\1 \end{bmatrix}$ and hence
 $\vec{X}_n = 4^{n-1} \begin{bmatrix} 4\\1 \end{bmatrix}$

and hence $a_n = 4^n$.

Problem 5: (15 points) Compute the singular value decomposition for the matrix

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

The easiest way is to compute AA^T which is

$$\left[\begin{array}{rrr} 2 & 1 \\ 1 & 2 \end{array}\right]$$

which has the eigenvectors

$$\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} , \ \vec{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

with the corresponding eigenvalues $\sigma_2^2 = 3$, $\sigma_2^2 = 1$. Now

$$\vec{v}_1 = \frac{1}{\sqrt{3}} A \vec{U}_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 2\\1\\1 \end{bmatrix} , \ \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\-1\\1 \end{bmatrix}$$

Hence we have

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0\\ 0 & 1 \end{bmatrix} \frac{1}{\sqrt{6}} \begin{bmatrix} 2 & 1 & 1\\ 0 & -\sqrt{3} & \sqrt{3} \end{bmatrix}$$

Check your answer!

Problem 6: a) (10 points) Find the general solution of the system of differential equations

$$\frac{dx}{dt} = x + 2y$$
$$\frac{dx}{dt} = 2x + y$$
$$A = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}$$

It has eigenvalues 3 and -1 with eigenvectors

$$\frac{1}{\sqrt{2}} \left[\begin{array}{c} 1\\1 \end{array} \right] \ , \ \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1\\-1 \end{array} \right]$$

The general solution is

Diagonalize the matrix

$$\vec{x}(t) = Ae^{3t} \begin{bmatrix} 1\\1 \end{bmatrix} + Be^{-t} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

b) (5 points) Find the solution that satisfies the initial condition x(0) = 1, y(0) = 2. To satisfy the initial conditions we have to solve

$$A\begin{bmatrix}1\\1\end{bmatrix} + B\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}1\\2\end{bmatrix}$$

which yields $A = \frac{3}{2}$ and $B = -\frac{1}{2}$ The solution is

$$\vec{x}(t) = \frac{3}{2}e^{3t} \begin{bmatrix} 1\\1 \end{bmatrix} - \frac{1}{2}e^{-t} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

Problem 7: True or false: (3 points each)

a) If a 2×2 matrix, that has a double eigenvalue, can be diagonalized then it must be proportional to I_2 . TRUE

b) Every symmetric positive definite matrix $S = M^T M$ for some matrix M. TRUE

c) If A is any $m \times n$ matrix then $A^T A$ and $A A^T$ have the same eigenvalues. FALSE

d) If A is an $n \times n$ matrix and $\vec{v} \in \mathbb{R}^n$ is any vector, then $\vec{v}, A\vec{v}, A^2\vec{v}, \dots, A^n\vec{v}$ are linearly dependent. TRUE

e) If A B are $n \times n$ and A has an eigenvalue λ and B an eigenvalue μ , then AB has the eigenvalue $\lambda \mu$. FALSE