
COMPLEX MATRICES, SIMILARITIES AND THE CAYLEY-HAMILTON
THEOREM

1. Complex matrices

Recall that the complex numbers are given by a + ib where a and b are real and i is the
imaginary unity, i.e.,

i2 = −1 .

The set of complex numbers is denoted by C. The addition and multiplication of two complex
numbers are given by

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

and the usual rules apply. In particular complex multiplication is commutative, i.e., z1z2 =
z2z1.

Notable is the inverse, i.e., the complex number z that solves the equation (a + ib)z = 1.
The solution is given by

z =
(a− ib)
a2 + b2

.

If a complex number z = a+ ib, then the complex conjugate z = a− ib. It has the property
that

zz = |z|2 = a2 + b2 .

If an n×m matrix A has complex entries, we call it a complex matrix. Thus if A is a given

complex matrix and ~b is a given complex vector we may try to solve the equation

A~x = ~b .

Clearly ~x will be a complex vector. The row reduction algorithm works also in this situation
and we can talk about the null space of a matrix the column space. These are now complex
vector spaces. One has to think a little about the other two subspaces and this has to do with
what we mean by a dot product for complex vectors. Now one is tempted to define the dot
product between two complex vectors ~z and ~w in Cn by z1w1 + z2w2 + · · · znwn. Here is the
problem: consider the vector in C2

~z =

[
1
i

]
then

~z · ~z = 12 + i2 = 1− 1 = 0 .

Recall that for real vectors we interpreted the dot of a vector with itself as the square of
the length. In the complex domain this does not seem to work. If we use the complex
conjugate, however, the story looks more promising. We define the inner product of two
vectors ~w, ~z ∈ Cn by

〈~w, ~z〉 = w1z1 + · · ·wnzn .

so that
〈~z, ~z〉 = |z1|2 + · · ·+ |zn|2 ,
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which is strictly positive unless ~z is the zero vector. Hence, we may define

‖~z‖ =
√
〈~z, ~z〉 .

The name ‘inner product’ is used to distinguish it from the dot product. Note that for real
vectors the inner product reduces to the dot product. There is one thing one has to be careful
about. We have

〈~z, ~w〉 = 〈~w, ~z〉 ,
which is different from the corresponding relation for the dot product. There are a number of
simple consequences. One is that Schwarz’s inequality still holds,

|〈~z, ~w〉| ≤ ‖~z‖‖~w‖ .

Further the triangle inequality is also true

‖~z + ~w‖ ≤ ‖~z‖+ ‖~w‖ .

These things are easy to prove.

Exercise 1 Prove Schwarz’s inequality and the triangle inequality.

Now we define two vectors ~z and ~w to be orthogonal if

〈~z, ~w〉 = 0 .

Note that in this definition it is irrelevant whether we consider 〈~z, ~w〉 = 0 or 〈~w, ~z〉 = 0, it
amounts to the same.

We define the adjoint of a matrix A the matrix AT and denote it by A∗. Thus the adjoint is
found by taking the complex conjugate of all the matrix elements and then take the transpose
or, what amounts to the same, the transpose and then taking the complex conjugate of all its
matrix elements.

Exercise 2 Show that (AB)∗ = B∗A∗ and that (A∗)−1 = (A−1)∗.

It is useful to observe that for any complex vectors ~z and ~w we have that

〈~z, A~w〉 = 〈A∗~z, ~w〉 . (1)

A subspace of Cn is a subset S with the property that for any two vectors ~w, ~z ∈ S the sum
~w+ ~z ∈ S and for any λ ∈ C and any ~w ∈ S, λ~w ∈ S. In precisely the same fashion we define
the orthogonal complement: Let S ⊂ Cn be a subspace, then

S⊥ = {~z ∈ Cn : 〈~z, ~w〉 = 0 for all ~w ∈ S} .

Theorem 1.1. Let S ⊂ Cn be a subspace. Then for any vector ~z ∈ Cn there exist vector
~v ∈ S and ~w ∈ S⊥ so that ~z = ~u + ~w. Moreover, the decomposition is unique. We say that
Cn is the direct sum of S and S⊥ and write Cn = S ⊕ S⊥.

Exercise 3 Prove this theorem.
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These notions give us the complex analog of the fundamental theorem of linear algebra:

Theorem 1.2. Let A be an n × m matrix. The the null space N(A) is a subspace of Cm,
C(A) a subspace of Cn. Similarly N(A∗) is a subspace of Cn and C(A∗) a subspace of Cm.
Moreover,

C(A)⊕N(A∗) = Cn

and

C(A∗)⊕N(A) = Cm

where ⊕ denotes the orthogonal sum. In other words the orthogonal complement of C(A) in
Cn is N(A∗) and the orthogonal complement of C(A∗) in Cm is N(A).

Proof. The orthogonal complement of C(A) consists of vectors in Cn that are orthogonal to all
the column vectors of the matrix A which is the same as all the vectors that are perpendicular
to each row of the matrix A∗. Hence C(A)⊥ = N(A∗). That C(A∗)⊥ = N(A) follows in the
same fashion. �

The next problem is whether there is a notion of least squares approximation for complex

matrices. As before we would like to find ~x ∈ Cm such that A~x −~b has the smallest length.
In other words we want to minimize

‖A~x−~b‖2 .

We claim that the optimizing ~x is such that A~x −~b is perpendicular to the column space of

A. Assuming this, we have that A~x−~b must be in the null space of A∗, i.e.,

A∗A~x = A∗~b .

This are once again the normal equations. What about projections? Assume that V is a
complex subspace of Cn whose complex dimension is m. We choose a basis of in general
complex vectors in V and create a matrix with these vectors as column vectors. Given a

vector ~b ∈ Cn we can try to write this vector as a vector in V , i.e., the column space of A and
a vector perpendicular to V . I.e., we have to find ~x so that

A~x−~b ⊥ V .

As before A~x−~b ∈ N(A∗) and hence

A∗A~x = A∗~b .

The matrix A∗A is m×m and has rank m and hence is invertible. Hence

~x = (A∗A)−1A∗~b

and the projection of ~b onto V is given by

A~x = A(A∗A)−1A∗~b

The matrix P = A(A∗A)−1A∗ is easily seen to be a projection. In fact we also have that
P ∗ = P .
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2. Unitary Matrices

The unitary matrices are the analog of complex matrices but in Cn. Imagine you are given
n orthonormal vectors ~u1, . . . , ~un

〈~uk, ~u`〉 = 0 , k 6= `

〈~uk, ~uk〉 = 1 , k = 1, . . . , n .

The we can form

U =
[
~u1 . . . ~un

]
It is now easy to check that

U∗U = In

and hence

U∗U = In = UU∗ ,

because the matrix U has full rank and hence is invertible. Such matrices are called unitary
matrices. It is straightforward to imitate the Gram-Schmidt procedure and hence any complex
matrix can be written as

A = UR

where U has column vectors that are orthonormal (maybe not n of them) and R is an upper
triangular matrix. Of course, R is complex. As a consequence, the column vectors of U form
an orthonormal basis for the column space of A. The projection onto this column space is
given by UU∗ (note that U∗U = I.). The least square solution is then given by

R~x = Q∗~b .

3. Eigenvalues and Eigenvectors

Recall that a nonzero vector ~v is an eigenvector of the n× n matrix A, if

A~v = λ~v .

The number λ is called the eigenvalue. We know that if ~v is an eigenvector then A− λI is a
singular matrix and hence

det(A− λI) = 0 .

The characteristic polynomial pA(λ) = det(A− λI) is a polynomial with complex coefficients
and hence we can factor it into linear factors

pA(λ) = (−1)n(λ− λ1) · · · (λ− λn)

where the roots are the eigenvalues. The following theorem is a precursor to what is known
as Schur factorization, but somewhat simpler.

Theorem 3.1. Let A be any complex n × n matrix. There exists an invertible n × n matrix
V and an upper triangular matrix T such that

A = V TV −1 .

The diagonal elements of T are precisely the eigenvalues.
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Proof. The proof proceeds by induction. Assume that the theorem holds for all (n−1)×(n−1)
matrices. We have to show it holds also for any n×n matrix. Let A be any n×n matrix. The
matrix A has an eigenvalue λ1 and hence there exists a vector ~v1 6= ~0 such that A~v1 = λ1~v1.
Now extend ~v1 to a basis, i.e., choose vectors ~w2, . . . , ~wn such that ~v1, ~w2, . . . , ~wn form a basis
for Cn. Define the invertible matrix V1 = [~v1, ~w2, . . . , ~wn] and note that

AV1 = [λ1~v1, A~w2, . . . , A~wn] .

Since ~v1, ~w2, . . . , ~wn is a basis, there exist numbers αk,j, k = 2, 3, . . . , n, j = 1, . . . , n so that

A~wj = α1,j~v1 +
n∑

k=2

αk,j ~wk

and hence

AV1 =

[
λ1~v1, α1,2~v1 +

n∑
k=2

αk,2 ~wk, . . . , α1,n~v1 +
n∑

k=2

αk,n ~wk

]
which can be written in the form

[~v1, ~w2, . . . , ~wn]


λ1 α12 α13 . . . α1n

0 α22 α23 . . . α2n

0 α32 α33 . . . αn3

. . . . .
0 αn2 αn3 . . . αnn


and hence

V −11 AV1 =


λ1 α12 α13 . . . α1n

0 α22 α23 . . . α2n

0 α32 α33 . . . αn3

. . . . .
0 αn2 αn3 . . . αnn


Looking at the (n− 1)× (n− 1) matrix

A1 :=


α22 α23 . . . α2n

α32 α33 . . . αn3

. . . .
αn2 αn3 . . . αnn


we find, using the induction hypotheses that there exists an invertible (n−1)× (n−1) matrix
W2 such that

W−1
2 A1W2 = U

where U is upper triangular. We may extend W2 to the matrix

V2 =

[
1 0
0 W2

]
which is again invertible with inverse

V −12 =

[
1 0
0 W−1

2

]
.
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Now we compute

V −12 V −11 AV1V2 = V −12 =

[
1 0
0 W−1

2

] [
λ1 αT

0 A1

] [
1 0
0 W2

]
=

[
1 0
0 W−1

2

] [
λ1 αTW2

0 A1W2

]
=

[
λ1 αTW2

0 W−1
2 A1W2

]
where αT denotes the row vector (α12, α13, . . . , α1n). Thus,

V −12 V −11 AV1V2 = V −12 =

[
λ1 αTW2

0 U

]
= T

where U is upper triangular. �

Here are two consequences.

Theorem 3.2. Let A be an n× n matrix and denotes its eigenvalues by λ1, . . . , λn. Then

detA = λ1λ2 · · ·λn
and

TrA :=
n∑

j=1

aii =
n∑

j=1

λj .

Proof. The first relation follows from

detA = detV TV −1 = detT = λ1λ2 · · ·λn .
The second relation follows from the fact that for any two n× n matrices A,B,

TrAB = TrBA

which is very easy to see. Now

TrA = TrV TV −1 = TrV −1V T = TrT .

This proves the theorem. �

We continue discussing Cayley’s theorem. If p(λ) is a polynomial of degree n we may
consider p(A) where A is an n× n matrix. The polynomial can be written as

p(λ) =
n∑

j=0

cjλ
j = c0 + c1λ+ c2λ

2 + · · ·+ cnλ
n

and then we define
p(A) = c0In + c1A+ c2A

2 + · · ·+ cnA
n .

Over the complex numbers we may factor p(λ) and write

p(λ) = a(λ− λ1)(λ− λ2) · · · (λ− λn)

where λ1, . . . λn are the roots of the polynomial p(λ) and a is some constant. It is easy to see
that

p(A) = a(A− λ1In)(A− λ2In) · · · (A− λnIn) .

Theorem 3.3. Let A be an n×n matrix and p(λ) := det(A−λIn) its characteristic polynomial.
Then

p(A) = 0

i.e., A is a ‘root’ of its characteristic polynomial.
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False proof. The following is nonsensical (why?)

p(A) = det(A− AIn) = det(A− A) = det0 = 0

�

Proof. We write the characteristic polynomial in the form

p(λ) = c0 + c1λ+ · · ·+ cnλ
n

and note that

c0In + c1A+ · · ·+ cnA
n = V (c0In + c1T + · · ·+ cnT

n)V −1

and hence it suffices to prove the theorem for the upper triangular matrix T which amounts
to showing that

(T − λ1In)(T − λ2In) · · · (T − λnIn) = 0 .

The first column of the upper triangular matrix (T − λ1In) consists only of zeros and the
matrix (T − λ2In) is upper triangular but the second entry of the second column is zero. The
first two columns of the product (T − λ1In)(T − λ2In) must therefore be zero. The same
reasoning shows that (T − λ1In)(T − λ2In)(T − λ3In) has the first three columns vanishing
and so forth. This proves Cayley’s theorem. �

An interesting aspect of Cayley’s theorem is that the first n powers of an n × n matrix
are linearly dependent. Thus, any power of A can be written as a linear combination of
In, A, . . . , A

n−1, which is somewhat surprising. Example: Consider the Fibonacci matrix

A =

[
1 1
1 0

]
whose characteristic polynomial is λ2 − λ− 1. Hence we have that

A2 = I + A

So

A3 = A+ A2 = A+ I + A = 2A+ I

A4 = 2A2 + A = 2(A+ I) + A = 3A+ 2I

From which we glean the structure

An = anA+ an−1I .

Indeed,

An+1 = anA
2 + an−1A = (an + an−1)A+ anI

and we get the recursion an+1 = an + an−1 which is the Fibonacci sequence. Of course, while
this is interesting from a theoretical point of view, it is less useful in practice.
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4. Hermitean matrices

A matrix A is hermitean if A∗ = A. This is one the important classes of matrices chiefly
because the ubiquitous in applications, like quantum mechanics. The point about these ma-
trices is that they can be always diagonalized. Recall from (1) that for a hermitean matrix
〈~z, A~w〉 = 〈A~z, ~w〉.

Lemma 4.1. The eigenvalues of a hermitean matrix are real.

Proof. Suppose λ is an eigenvalue of A with eigenvector ~w. Then

λ〈~w, ~w〉 = 〈~w, λ~w〉 = 〈~w,A~w〉 .
A similar computation shows that

λ〈~w, ~w〉 = 〈A~w, ~w〉 = 〈~w,A∗ ~w〉
and since A = A∗ it follows that λ〈~w, ~w〉 = λ〈~w, ~w〉 and the eigenvalue is real. �

The notion of invariant subspace is a useful one.

Definition 4.2. A subspace V ⊂ Cn is invariant under A, if for every ~w ∈ V , A~w ∈ V .

Another key fact about hermitean matrices is the following

Lemma 4.3. Let V ⊂ Cn be a subspace invariant under A. Then its orthogonal complement
V ⊥ is also invariant under A.

Proof. Pick any ~z ∈ V ⊥ and any ~w ∈ V . Then

〈~w,A~z〉 = 〈A~w, ~z〉 = 0

since A~w ∈ V . Since ~w ∈ V is arbitrary, A~z ∈ V ⊥. �

Here is a statement that shows why the invariant subspace notion is useful.

Lemma 4.4. Let A be any complex n × n matrix and assume that V is invariant under A.
Set k = dimV . There exists a unitary matrix U such that

U∗AU =

[
B C
0 D

]
where B is a k× k matrix, C a k× n− k matrix and D a (n− k)× (n− k) matrix. The zero
matrix at the bottom is a (n− k)× k matrix. Note that V ⊥ is not invariant under A, because
we do not assume that A = A∗.

Proof. Pick an orthonormal basis ~u1, . . . , ~uk in V and an orthonormal basis ~uk+1, . . . , ~un in
V ⊥. Since V is invariant under A we have for 1 ≤ j ≤ k

A~uj =
∑
`=1k

B`j~u`

for some coefficients B`j. If k + 1 ≤ j ≤ n we have that

A~uj =
k∑

`=1

C`j~u` +
n∑

`=k+1

D`j~u` .

Form the matrix
U = [~u1, . . . , ~un] ,
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which is a unitary matrix, and note that

AU = [A~u1, . . . , A~uk, A~uk+1, . . . , A~un] = [~u1, . . . , ~un]

[
B C
0 D

]
= U

[
B C
0 D

]
,

which proves the claim. �

As a corollary we have that

Theorem 4.5. Let A be a hermitean n × n matrix and V ⊂ Cn a k-dimensional subspace
invariant under A. Then there exists a unitary matrix U such that U∗AU has the form

U∗AU =

[
B 0
0 D

]
.

The k × k matrix B and the (n− k)× (n− k) matrix D are both hermitean.

Proof. Both subspaces V and V ⊥ are invariant under A and hence the result follows from the
previous lemma. �

Exercise 4 Let A be any complex 2 × 2 matrix. Show that there exists a unitary matrix U
such that A = UTU∗ and T is upper triangular.

The next theorem is due to Schur:

Theorem 4.6. Let A be an n× n complex matrix. Then there exists a unitary matrix U and
an upper triangular matrix T such that

A = UTU∗ .

Proof. We use induction. The theorem is true for 2×2 matrices by the exercise above. Assume
that the theorem is true for (n− 1)× (n− 1) matrices. We have to prove that it is also is true
for n × n matrices. Consider the eigenvalue λ1 with the corresponding eigenvector ~v1. The
space spanned by ~v1 is an invariant subspace for A and by Lemma 4.4 there exists a unitary
matrix U1 such that

A = U1A1U
∗
1

where A1 has the form

A1 =

[
λ1 C∗

0 B

]
.

Here C∗ is a row vector of dimension n− 1 and B is an (n− 1)× (n− 1), in general complex,
matrix. Using the induction assumption for B there exists a (n− 1)× (n− 1) unitary matrix
V such that B = V RV ∗ where R is an upper triangular matrix. Now set

U2 =

[
1 0
0 V

]
which is a unitary matrix and note that

U∗2A1U2 =

[
1 0
0 V ∗

] [
λ1 C∗

0 B

] [
1 0
0 V

]
=

[
1 0
0 V

] [
λ1 C∗V
0 BV ∗

]
=

[
λ1 C∗V
0 V ∗BV

]
,

=

[
λ1 C∗V
0 R

]
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which is an upper triangular matrix, which we call T . Hence,

A = U1U2TU
∗
2U
∗
1 = (U1U2)T (U1U2)

∗ .

Since U1U2 is unitary, this proves Schur’s theorem. �

The advantage of Schur’s theorem is that unitary matrices are much easier to handle both
algebraically and numerically. The reason is that the matrix element are all in magnitude
bounded by 1, An interesting point is that in the course of proving the theorem one has to
compute the eigenvalues of smaller and smaller matrices.


