BASIS IN A FINITE DIMENSIONAL VECTOR SPACE

Hopefully you have come to appreciate the notion of a basis. In this note we prove the existence of a basis. We restrict ourselves to vector spaces V who are spanned by finitely many vectors

$$
S=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}
$$

Recall that this means that every vector in V is a linear combination of the vectors $u_{1}, u_{2}, \ldots, u_{k}$. Also recall that a set of vectors is a basis for a vector space V if this set of vectors is linearly independent and spans the space V.

Theorem 0.1. The vector space V has a basis of the form

$$
B=\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{\ell}}\right\}
$$

In particular B is a subset of S.
Proof. The reasoning here is inductive, not very difficult but important. We may assume that the set S does not contain the zero vector. If it does, just discard it. Next, we think of the vectors in S as an ordered list, there is a first vector, a second vector and so on until the k th vector. Now we pick u_{1} as the first vector in our basis to be constructed. Consider the second vector u_{2}. If it is proportional to u_{1} discard it from the list and go to the next one. If this vector is again proportional to u_{1} discard it from the list and consider the next one. It may happen that you discard all the vectors following u_{1} but then u_{1} is a basis for the space V, since $u_{1} \neq 0$ and every vector in V is proportional to u_{1}. If this does not happen then you end up with a vector in the list that is not proportional to u_{1}. We call it $u_{i_{2}}$. Now form the span T_{2} of u_{1} and $u_{i_{2}}$, i.e., the set of all linear combinations of u_{1} and $u_{i_{2}}$ and pick the next vector in the list. If this vector is in T_{2} remove it from the list and check with the next vector as before. The first vector you find that is not in T_{2} you call $u_{i_{3}}$. Now form the span T_{3} of the vectors $u_{1}, u_{i_{2}}$ and $u_{i_{3}}$ and by discarding if necessary all the following vectors that are in T_{3} pick the vector $u_{i_{4}}$ that is not in T_{3}. The span of $u_{1}, u_{i_{2}}, u_{i_{3}}, u_{i_{4}}$ is T_{4}. One can go on with this process but it will stop once we have used up all the vectors. This provides you with a list of vectors $B=\left\{u_{1}, u_{i_{2}}, \ldots, u_{i_{\ell}}\right\}$. If we denote the space spanned by the vector u_{1} by T_{1} then we have a sequence of nested subspaces

$$
T_{1} \subset T_{2} \subset T_{3} \subset \cdots \subset T_{\ell}
$$

and it never happens that $T_{i}=T_{i+1}$. Now we show that the set B consists of linearly independent vectors. Suppose that

$$
\sum_{j=1}^{\ell} c_{j} u_{i_{j}}=0
$$

that is

$$
c_{1} u_{1}+c_{2} u_{i_{2}}+\cdots+c_{\ell} u_{i_{\ell}}=0 .
$$

If $c_{\ell} \neq 0$ then $u_{i_{\ell}}$ is a linear combination of the other vectors and hence in $T_{\ell-1}$ contrary to our construction. Hence $c_{\ell}=0$. For the same reason the next number $c_{\ell-1}$ must also be zero because otherwise $u_{\ell-1}$ would be in $T_{\ell-2}$. Continuing in this way we see that all coefficients have to vanish. Thus the vectors in B form a linearly independent set. By construction every
vector in S is a linear combination of vectors in B and since the vectors in S form a spanning set, B is also a spanning set. Thus B is a basis.

Theorem 0.2. Assume that $\vec{u}_{1}, \ldots, \vec{u}_{n}$ span a vector space V. Then any set of $n+1$ vectors in V is linearly dependent.
Proof. We proceed by induction on n. For $n=1$ every vector in V is proportional to \vec{u}_{1} and hence any two vectors $\vec{f}_{1}, \overrightarrow{f_{2}}$ are of the form $f_{1}=c_{1} \vec{u}_{1}$ and $\vec{f}_{2}=c_{2} \vec{u}_{1}$ for numbers c_{1}, c_{2}. We find that $c_{2} \overrightarrow{f_{1}}-c_{1} \overrightarrow{f_{2}}=\overrightarrow{0}$. Thus, we assume as our induction hypotheses that the statement holds for any $k \leq n-1$ and we have to prove it for $k=n$. Let $\vec{f}_{1}, \ldots, \vec{f}_{n+1}$ vectors in V. We may write

$$
\vec{f}_{j}=\sum_{i=1}^{n} c_{i j} \vec{u}_{i}, j=1, \ldots, n+1
$$

since $\vec{u}_{1}, \ldots, \vec{u}_{n}$ span V. There exists at least one number among $c_{i(n+1)}, i=1, \ldots, n$ which is not zero, because otherwise \vec{f}_{n+1} is the zero vector which implies that the set is linearly dependent and there is nothing to prove. Hence, we may assume that $\vec{f}_{n+1} \neq \overrightarrow{0}$ and we may assume after relabeling the vectors $\vec{u}_{j}, j=1, \ldots, n$ that $c_{n(n+1)} \neq 0$. We may solve for \vec{u}_{n} and write

$$
\vec{u}_{n}=\frac{1}{c_{n(n+1)}}\left[\vec{f}_{n+1}-\sum_{i=1}^{n-1} c_{i(n+1)} \vec{u}_{i}\right]
$$

and hence

$$
\vec{f}_{j}=\sum_{i=1}^{n-1} c_{i j} \vec{u}_{i}+\frac{c_{n j}}{c_{n(n+1)}}\left[\vec{f}_{n+1}-\sum_{i=1}^{n-1} c_{i(n+1)} \vec{u}_{i}\right], j=1, \ldots, n,
$$

or

$$
\vec{f}_{j}-\frac{c_{n j}}{c_{n(n+1)}} \vec{f}_{n+1}=\sum_{i=1}^{n-1}\left[c_{i j}-\frac{c_{n j} c_{i(n+1)}}{c_{n(n+1)}}\right] \vec{u}_{i}, j=1, \ldots, n
$$

Thus, the n vectors $\vec{f}_{j}-\frac{c_{n j}}{c_{n(n+1)}} \vec{f}_{n+1}, j=1, \ldots, n$ are in the span of the vectors $\vec{u}_{1}, \ldots, \vec{u}_{n-1}$ and hence by induction assumption they must be linearly dependent. This implies that the vectors $\vec{f}_{1}, \ldots, \vec{f}_{n+1}$ are also linearly dependent.

Corollary 0.3. Let $\vec{u}_{1}, \ldots, \vec{u}_{k}$ be a basis for the vector space V and $\vec{w}_{1}, \ldots, \vec{w}_{\ell}$ be another basis for V. Then $k=\ell$ and we call this number the dimension of $V, \operatorname{dim} V$.

Proof. If $\ell>k$, then the vectors $\vec{w}_{1}, \ldots, \vec{w}_{\ell}$ are linearly dependent and hence is not from a basis contradicting the assumption. If $k>\ell$ the reasoning is similar.

The following statement is often used.
Corollary 0.4. If V, W are two vector spaces with $V \subset W$ and if $\operatorname{dim} V=\operatorname{dim} W$, then $V=W$.

Proof. Otherwise we could find another vector in W which is not in V which can be added to the basis of V with the result that $\operatorname{dim} V<\operatorname{dim} W$.

