
THE DISCRETE FOURIER TRANSFORM

1. Roots of 1

First a little review about complex numbers, namely roots of 1. You know of course that
the equation x2 = 1 has two roots, +1 and −1. If we consider the equation x4 = 1 and look
for solution in the complex domain we find the four roots 1, i,−1,−i where you recall that
i2 = −1. Thus we can factor

x4 − 1 = (x− 1)(x− i)(x+ 1)(x+ i) .

The roots of the equation x3 − 1 = 0 are given by 1, −1+i
√
3

2
, −1−i

√
3

2
. and hence

x3 − 1 = (x− 1)(x− −1 + i
√

3

2
)(x+

1 + i
√

3

2
) .

Things become much clearer if we jot down these points in the complex plane. Th roots of
the equation x4 − 1 = 0 are on the unit circle and are the corners of a square and the roots
x3 − 1 = 0 are also on the unit circle and are the corners of an equilateral triangle.

Using a bit of trigonometry we find that the roots of x4 − 1 = 0 can be written as

1 = cos 0 + i sin 0 = ei0 , i = cos(π/2) + i sin(π/2) = eiπ/2 ,

−1 = cos(π) + i sin(π) = eiπ , −i = cos(3π/2) + i sin(3π/2) = ei3π/2 .

and likewise, the roots of the equation x3 − 1 = 0 can be written as

1 = cos 0 + i sin 0 = ei0 ,
−1 + i

√
3

2
= cos(2π/3) + i sin(2π/3) = ei2π/3 ,

−1− i
√

3

2
= cos(4π/3) + i sin(4π/3) = ei4π/3 .

For the general equation xn − 1 = 0 we get the roots

1 , e2πi
1
n , e2πi

2
n , e2πi

3
n , . . . , e2πi

n−1
n .

To abbreviate the notation we set

ωn = e2πi
1
n

and can write the set of roots as

K ′ = {1 , ωn , ω2
n , ω

3
n . . . , ω

n−1
n } .

There is a close relationship of the roots of unity and cyclic permutations which we explore
in the next section.

1



2 THE DISCRETE FOURIER TRANSFORM

2. The permutation matrix T

The n × n matrix T is is the matrix that maps the vector [x1, x2, . . . , xn] to the vector
[x2, x3, . . . , xn, x1]. The matrix T can be written as

T =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 . . . 0 1
1 0 0 . . . 0 0


.

The matrix is orthogonal and hence can be diagonalized, in fact there exists a unitary matrix
U such that

T = UDU∗

where D is diagonal. It is clear that T n = I and that tells us that the eigenvalues must be
roots of 1. Indeed

I = T n = UDnU∗

and hence Dn = I and the diagonal elements of D must be roots of 1. Let ω be one of the
eigenvalues and denote the components of the corresponding eigenvector by [~x1, . . . , xn]. The
eigenvalue equation then reads as

x2 = ωx1 , x3 = ωx2, . . . , x1 = ωxn

and we can solve this easily by choosing x1 = 1 so that x2 = ω, x2 = ω2, . . . , xn = ωn−1. we
may write this as 

ω0

ω
ω2

.

.
ωn−1

 .

Any root of unity can be expressed through ωn and hence we can write down n vectors

~v0 =


1
1
1
.
.
1

 , ~v1 =


1
ωn
ω2
n

.

.
ωn−1n

 , ~v3 =


1

(ω2
n)

(ω2
n)2

.

.
(ω2

n)n−1

 , . . . , ~vn−1 =


1

(ωn−1n )
(ωn−1n )2

.

.
(ωn−1n )n−1

 .

These vectors are pairwise orthogonal. To see this we compute the inner products for k 6= `

〈vk, ~v`〉 =
n−1∑
j=0

(ωkn)
j
(ω`n)j =

n−1∑
j=0

ω(`−k)j
n =

1− ω(`−k)n
n

1− ω`−kn

= 0

since ω
(`−k)n
n = 1. If k = ` the inner product is n and if we divide the vectors by

√
n they are

normalized and form an orthonormal basis of Cn.



THE DISCRETE FOURIER TRANSFORM 3

Thus the unitary matrix U is given by n−1/2Fn where

Fn =


1 1 1 1 . . . 1
1 ωn ω2

n ω3
n . . . ωn−1n

1 ω2
n (ω2

n)2 (ω3
n)2 . . . (ωn−1n )2

. . . . . . . .
1 ωn−1n (ω2

n)n−1 (ω3
n)n−1 . . . (ωn−1n )n−1

 ,

=


1 1 1 1 . . . 1
1 ωn ω2

n ω3
n . . . ωn−1n

1 ω2
n ω4

n ω6
n . . . ω

2(n−1)
n

. . . . . . . .

1 ωn−1n ω
2(n−1)
n ω

3(n−1)
n . . . ω

(n−1)2
n


We call this the Fourier matrix. Lets work all this out when n = 4. The roots are, as we
have seen, 1, i, i2, i3 or 1, i,−1,−i. Then the matrix of eigenvectors is given by

1 1 1 1
1 i i2 i3

1 (i2) (i2)2 (i2)3

1 (i3) (i3)2 (i3)3

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


Note that the column vectors of this matrix are orthogonal with respect to the inner product
and hence, normalizing these vectors, we get

U =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , (1)

a unitary matrix. One computes easily that TU = UD where

D =


1 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 i


3. Application to differential equations

Imagine n pearls each having mass m on a circle. We assume that the pearls can slide on
this circle and they are coupled to each other via springs with spring constant k. The first
pearl interacts with the second and the last the second pearl interacts with the first and the
third and so on. The last interacts with the penultimate and the first. We denote the positions
of the pearls on the circle by x1, . . . , xn and we assume that the ordering is clockwise. The
force acting on the first pearl is given by

−k(x1 − xn)− k(x1 − x2)

where −k(x1 − x4) is the force that pearl n exerts on the first pearl and −k(x1 − x2) is the
force that the second pearl exerts on the first one. Newton’s equation states that

mẍ1 = −k(x1 − xn)− k(x1 − x2)



4 THE DISCRETE FOURIER TRANSFORM

or, if we set ω2 = k/m
ẍ1 = ω2(xn − 2x1 + x2)

Repeating this argument for all the pearls we find the system of equations:

ẍ1 = ω2(xn−2x1+x2) , ẍ2 = ω2(x1−2x2+x3) , ẍ3 = ω2(x2−2x3+x4) , . . . , ẍn = ω2(xn−1−2xn+x1) .

The problem is to solve this system of equations given initial conditions xi(0) = ai and
ẋi = bi, i = 1, . . . , n. The ai are the initial position and the bi the initial velocities.

This is a formidable problem that, nevertheless has an elegant solution. The first step is to
write this system of equations in matrix form. Set

~X =


x1
x2
.
.
.
xn


and note that the system can be written as

d2 ~X

dt2
= ω2(T − 2I + T−1) ~X

As an example, take n = 4. Then we get the equations

d2x1
dt2 i

= ω2(x4 − 2x1 + x2) ,

d2x2
dt2 i

= ω2(x1 − 2x2 + x3) ,

d2x3
dt2 i

= ω2(x2 − 2x3 + x4) ,

d2x4
dt2 i

= ω2(x3 − 2x4 + x1) .

We assume that we are given the initial conditions ~x(0) = ~x0 and d
dt
~x(0) = ~v0. We have

diagonalized T . We get the eigenvalues 0,−2ω2,−4ω2,−2ω2 with the eigenvectors as the
column vectors in (1). Thus, we have

T = UDU∗

and one easily computes that

U∗ =
1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

To solve the system of differential equations

d2 ~X

dt2
= ω2(T − 2I + T−1) ~X

and hence
d2 ~X

dt2
= ω2U(D − 2I +D−1)U∗ ~X



THE DISCRETE FOURIER TRANSFORM 5

or if we set ~Y = U∗ ~X
d2~Y

dt2
= ω2(D − 2I +D−1)~Y

which we have to solve with the initial conditions ~Y (0) = U∗ ~A =: α and d~Y
dt

(0) = U∗ ~B =: β.
In the case where n = 4 we find that

D − 2I +D−1 =


0 0 0 0
0 −2 0 0
0 0 −4 0
0 0 0 −2

 .

Writing it out in detail we have

ÿ1 = 0 , ÿ2 = −2ω2y2 , ÿ3 = −4ω2 , ÿ4 = −2ω2 .

and hence

y1(t) = α1 + β1t , y2(t) = cos(
√

2ωt)α2 +
sin(
√

2ωt)√
2ω

β2 ,

y3(t) = cos(2ωt)α3 +
sin(2ωt)

2ω
β3 , y4(t) = cos(

√
2ωt)α4 +

sin(
√

2ωt)√
2ω

β4

and recalling that the ~α and ~β vector are given

~α = U∗A , ~β = U∗ ~B .

Note that the vectors are complex numbers. Hence we have to multiply the initial conditions
~A and ~B have to be multiplied by U∗. Then we compute y1(t), y2(t), y3(t), y4(t) which yields
~Y (t). Then we have to compute

~X(t) = U ~Y (t) .

As an example, consider the initial condition ~B = ~0 and ~A =


1
−1
0
0

. Then

U∗ ~A =
1

2


0

1 + i
2

1− i


and of course U∗ ~B = ~0. The ~Y (t) vector is then given by

y1(t) = 0 , y2(t) = cos(
√

2ωt)
1 + i

2
,

y3(t) = 2 cos(2ωt) , y4(t) = cos(
√

2ωt)
1− i

2
and then

~X(t) =
1

2
cos(
√

2ωt)


1
−1
−1
1

+ cos(2ωt)


1
−1
1
−1

 .



6 THE DISCRETE FOURIER TRANSFORM

Note that the multiplications by the Fourier matrix is rather tedious, because the matrix is a
full matrix. Naively, it would take us n2 operations to compute Fn~x. We shall se in the next
section that the situation is much better.

4. Fast Fourier transform

The Fourier matrix is not sparse and hence to compute Fn~x it takes about n2 operations.
We shall show by arranging the computation in a clever way, that it takes much fewer steps.
To describe the result we set n = 2k.

Theorem 4.1. Let ωn = e
2πi
n with n = 2k. One can calculate Fn~x for any vector ~x ∈ Cn in

4 · 2kk = 4n log2(n) operations.

Consider the case where n = 2m. Given an arbitrary n vector ~x. Write it in the form

~y =

[
~y0
~y1

]
where ~y0 contains only the entries of ~x with even index and likewise ~y1 the entries

with odd index, i.e., we write ~y0 = [x0, x2, . . . , x2(m−1)] and ~y1 = [x1, x3, . . . , x2m−1]. Then we
can write the vector [

~y0
~y1

]
= P~x

where P is the permutation matrix that maps the indices (0, 2, . . . , 2(m−1)) to (0, 1, . . . ,m−1)
and the indices (1, 2, . . . 2m− 1) to the indices (m, . . . , 2m− 1). The point now is that

[F2m~x]j =
2m−1∑
`=0

ωj`2mx` =
m−1∑
`=0

ωj2`2mx2` +
m−1∑
`=0

ω
j(2`+1)
2m x2`+1

=
m−1∑
`=0

ωj`mx2` + ωj2m

m−1∑
`=0

ωj`mx2`+1

using that

ω2j`
2m = e

2πi2l`
2m = e

2πil`
m = ωj`m .

We can rewrite this using the vectors ~y0 and ~y1 (which are m vector) as

[F2m~x]j = [Fm~y0]j + ωj2m[Fm~y1]j .

Note that for m ≤ j ≤ 2m− 1

ωj2m = ωj−m2m e
2πi
2m

m = −ωj−m2m .

Thus, if we denote by Dm the diagonal m×m matrix that has ωj2m on the diagonal we may
write the Fourier multiplication as

F2m =

[
I Dm

I −Dm

] [
Fm 0
0 Fm

]
P .

Computing P~x does not use any operations, we just group the even indexed and odd
indexed elements together. This is achieved by a suitable input routine. Let c(m) be the
smallest number of steps to compute Fm~y. That gives us 2c(m) steps to compute[

Fm 0
0 Fm

]
P~x



THE DISCRETE FOURIER TRANSFORM 7

To compute DmFm that takes another m steps, because Dm is diagonal. Hence we need
2c(m) + m steps to compute F2m~x. In other words, if c(m) denotes the smallest number of
steps to compute Fm~y then

c(2m) ≤ 2c(m) +m .

Suppose we pick n = 2k then c(2k) ≤ 2c(2k−1) + 2k−1 This leads to a recursion which can be
solved with the result that

c(2k) ≤ 2k−1a0 + (k − 1)2k−1 .

Here a0 is the number of steps to compute the Fourier transform for a two vector which takes
two steps. Thus, if we stick n back in, we get that the multiplication of the Fourier matrix
Fn with an arbitrary vector takes

n(1 +
1

2
log2 n)

step. If we choose n = 220 which about a million by million matrix, it takes about 106(a0 +10)
which should be compared with the naive computation which would give 1012.


