
THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

Theorem 0.1. For any m×n matrix A the dimension of the Column Space and the dimension
of the Null Space add up to the total number of columns, i.e.,

dimC(A) + dimN(A) = n .

Proof. We denote r = dimC(A), the rank of the matrix and k = dimN(A). The idea is to
construct a basis of the form v1, . . . , vr, u1, . . . uk for Rn. It then follows that k+ r = n. Pick a
basis w1, . . . , wr in C(A). Since these vectors are in the column space of A there exists vectors
v1, . . . , vr in Rn so that wj = Avj, j = 1, . . . , r. For the remaining vectors we pick a basis for
the null space u1, . . . , uk. We have to show that v1, . . . , vr, u1, . . . , uk is a basis for Rn, which
shows that r + k = n.

To establish this we have to prove that these vectors span Rn and that they are linearly
independent. For the independence we write

0 =
r∑

j=1

αjvj +
k∑

`=1

β`u` (1)

and want to show that the coefficients α1 = · · · = αr = β1 = · · · = βk = 0. Apply the matrix
A to (1) to get

0 =
r∑

j=1

αjwj

where we have used that the ujs are in N(A) and that Avj = wj, j = 1, . . . r. Since the wjs
are independent the αjs are all zero. But then, by (1), since the ujs are also independent we
must have that the βjs vanish also. Next we show that w1, . . . , wr, u1, . . . , uk span Rn. Pick
any vector x ∈ Rn and apply A to it. We have that Ax ∈ C(A), and since w1, . . . , wr is a
basis for C(A)

Ax =
r∑

j=1

cjwj .

This shows that x −
∑r

j=1 cjvj ∈ N(A) which is spanned by the ujs and this establishes the
claim. �

What is interesting is that we did not use any row reduction to prove this theorem. All we
needed was that the spaces involved are finite dimensional and the existence of a basis.

The next theorem connects the matrix A with its transpose AT .

Theorem 0.2. We have

dimC(AT ) = dimC(A) = rank(A) .

In other words the row vectors and column vectors span spaces of the same dimension.

Proof. We argue with row reduction. Bringing A into row reduced echelon form, the number
of rows with a pivot and the number of columns with a pivot must be the same. This number
is the rank of the matrix. The rows with a pivot are linearly independent and span the row
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space of the row reduced matrix. Since the row space did not change under row operations
this is also a basis for the row space of the matrix A. Hence dimA = dimAT = rankA. �

There is a strong connection between the the transpose matrix and the dot product. The
following is completely elementary.

Lemma 0.3. Let A be an m× n matrix and x ∈ Rn and y ∈ Rm. Then

yTAx = (ATy)Tx . (2)

If x is perpendicular to all vectors in C(AT ) then (ATy)Tx = 0 for all y ∈ Rm and by the
above formula yTAx = 0 for all y ∈ Rm. Hence Ax = 0 and x ∈ N(A). To understand this in
a better way, we introduce the orthogonal complement.

Definition 0.4. Let V be a subspace of Rn. The orthogonal complement of V in Rn is given
by

V ⊥ := {x ∈ Rn : xTy = 0, all y ∈ V }

It is an exercise to convince yourself that V ⊥ is also a subspace of Rn. Using this notion of
orthogonal complement we obtain the important relation

C(AT )⊥ = N(A) . (3)

The key result about this is

Theorem 0.5. Every vector x ∈ Rn can be written in a unique way as a sum of two vectors,
y ∈ V and z ∈ V ⊥.

Proof. Here is the idea: Pick any x ∈ Rn and try to find a vector y ∈ V that is closest
to x. Suppose for the moment that such a vector y exists. We claim that x − y must be
perpendicular to all the vectors in V . To see this pick any v ∈ V, t ∈ R and consider the
function

f(t) := ‖x− (y + tv)‖2 .
Note that y + tv ∈ V since V is a subspace. Hence f(t) ≥ f(0) because we assumed that y is
the vector in V that is closest to x. Now we compute

f(t) = ‖x− y‖2 + 2t(x− y)Tv + t2‖v‖2 .
Obviously f(t) is differentiable and since it has a minimum at t = 0 we must have that
f ′(0) = 0. But this means that (x − y)Tv = 0. Since v ∈ V is arbitrary we learn that
x− y ⊥ V . In other words if we set x− y = z

x = z + y , y ∈ V , z ∈ V ⊥ .

This decomposition is unique because if x = y1 + z1 then

y + z = y1 + z1 or y − y1 = z1 − z
which means that y − y1 ∈ V ∩ V ⊥ and thus y = y1.

The problem that remains to be solved is to find y or at least show that it exists.
�

In particular
[V ⊥]⊥ = V .

This means, that the only vector in Rn that is perpendicular to V as well as V ⊥ is the zero
vector.


