HOMEWORK 2, DUE THURSDAY JANUARY 23

Problem 1, (5 points): Consider the set X of rational numbers in the interval $[0,1]$. For any of the intervals $(a, b),[a, b],(a, b],[a, b) \subset[0,1] \cap \mathbb{Q}$ define its measure to be

$$
m(a, b)=b-a
$$

Show that this measure cannot be extended to a σ additive measure on this set.

Problem 2, (5 points): Recall that the symmetric difference of two sets $A, B \subset \mathbb{R}^{d}$ is given by $A \Delta B=(A \backslash B) \cup(B \backslash A)$. Prove that

$$
\left||A|_{e}-|B|_{e}\right| \leq|A \Delta B|
$$

Problem 3, (5 points): Let $\left\{E_{k}\right\}_{k=1}^{\infty}$ be a sequence of sets in \mathbb{R}^{d}. Define the sets

$$
\limsup _{k \rightarrow \infty} E_{k}:=\cap_{j=1}^{\infty}\left(\cup_{k=j}^{\infty} E_{k}\right) \text { and } \liminf _{k \rightarrow \infty} E_{k}:=\cup_{j=1}^{\infty}\left(\cap_{k=j}^{\infty} E_{k}\right)
$$

Show that $\lim \sup _{k \rightarrow \infty} E_{k}$ consists of those points $x \in \mathbb{R}^{d}$ that belong to infinitely many of the E_{k} and that $\lim \inf _{k \rightarrow \infty} E_{k}$ consists of the points $x \in \mathbb{R}^{d}$ that belong to all but finitely many of the E_{k}.

Problem 4, (5 points): Please do problem 2.1.39 in Heil's book.

Problem 5, (5 points): Please do problem 2.1.40 in Heil's book.

