HOMEWORK 2, DUE THURSDAY JANUARY 23

Problem 1, (5 points): Consider the set X of rational numbers in the interval [0, 1]. For any of the intervals $(a, b), [a, b], (a, b], [a, b] \subset [0, 1] \cap \mathbb{Q}$ define its measure to be

$$m(a,b) = b - a$$

Show that this measure cannot be extended to a σ additive measure on this set.

Problem 2, (5 points): Recall that the symmetric difference of two sets $A, B \subset \mathbb{R}^d$ is given by $A\Delta B = (A \setminus B) \cup (B \setminus A)$. Prove that

$$||A|_e - |B|_e| \le |A\Delta B| .$$

Problem 3, (5 points): Let $\{E_k\}_{k=1}^{\infty}$ be a sequence of sets in \mathbb{R}^d . Define the sets

$$\limsup_{k \to \infty} E_k := \bigcap_{j=1}^{\infty} \left(\bigcup_{k=j}^{\infty} E_k \right) \text{ and } \liminf_{k \to \infty} E_k := \bigcup_{j=1}^{\infty} \left(\bigcap_{k=j}^{\infty} E_k \right)$$

Show that $\limsup_{k\to\infty} E_k$ consists of those points $x \in \mathbb{R}^d$ that belong to infinitely many of the E_k and that $\liminf_{k\to\infty} E_k$ consists of the points $x \in \mathbb{R}^d$ that belong to all but finitely many of the E_k .

Problem 4, (5 points): Please do problem 2.1.39 in Heil's book.

Problem 5, (5 points): Please do problem 2.1.40 in Heil's book.