HOMEWORK 4, DUE THURSDAY FEBRUARY 6

Problem 1, (5 points): Please do Problem 2.2.39 in Heil.
Solution: Fix $\alpha<1$ and suppose that there is no cube with $|E \cap Q|_{e} \geq \alpha|Q|$. Hence for every cube we have that $|E \cap Q|_{e}<\alpha|Q|$. For any $\varepsilon>0$ there exists a countable collection of cubes Q_{k} such that $E \subset \cup_{k} Q_{k}$ and such that

$$
\sum_{k}\left|Q_{k}\right| \leq|E|_{e}+\varepsilon .
$$

This follows from the definition of the exterior measure. We may assume that $E \cap Q_{k} \neq \emptyset$ because otherwise we could drop it from the sum while preserving the above inequality. By assumption

$$
\alpha \sum_{k}\left|Q_{k}\right|>\sum_{k}\left|E \cap Q_{k}\right|_{e}
$$

and by subadditivity

$$
\sum_{k}\left|E \cap Q_{k}\right|_{e} \geq|E|_{e}
$$

Hence

$$
\alpha\left(|E|_{e}+\varepsilon\right) \geq|E|_{e}
$$

which, since ε can be chosen as small as we like and $\alpha<1$ is a contradiction.

Problem 2, (5 points): Please work Problem 2.3.17 in Heil.
Solution: Consider the sets $E \backslash A_{n}$. Since $|E|<\infty$ and $\left|A_{n}\right| \rightarrow|E|$ as $n \rightarrow \infty$ we find

$$
\left|E \backslash A_{n}\right| \rightarrow 0
$$

as $n \rightarrow \infty$. Hence there exists a subsequence n_{k} such that $\sum_{k}\left|E \backslash A_{n_{k}}\right|<|E|$. Now,

$$
\cup_{k}\left(E \backslash A_{n_{k}}\right)=E \backslash\left(\cap_{k} A_{n_{k}}\right)
$$

and hence

$$
\left|E \backslash\left(\cap_{k} A_{n_{k}}\right)\right|+\left|\cap_{k} A_{n_{k}}\right|=|E| .
$$

Therefore,

$$
\left|\cap_{k} A_{n_{k}}\right|=|E|-\left|\cup_{k}\left(E \backslash A_{n_{k}}\right)\right| \geq|E|-\sum_{k}\left|E \backslash A_{n_{k}}\right|>0
$$

using subadditivity.

Problem 3, (7 points): Please work Problem 2.3.18 in Heil.
Solution: If E is measurable then

$$
|Q|=|Q \cap E|_{e}+|Q \backslash E|_{e}
$$

using Caratheodory's criterion. Conversely, suppose the above equation holds for every box Q. Let A be an arbitrary set. By subadditivity of the exterior measure

$$
|A|_{e} \leq|A \cap E|_{e}+|A \backslash E|_{e}
$$

Pick $\varepsilon>0$. There exists a countable collection of boxes such that $A \subset \cup_{k} Q_{k}$ and

$$
|A|_{e} \geq \sum_{k}\left|Q_{k}\right|-\varepsilon=\sum_{k}\left|Q_{k} \backslash E\right|+\left|Q_{k} \cap E\right|-\varepsilon
$$

and by countable subadditivity and monotonicity

$$
\begin{gathered}
|A \backslash E| \leq\left|\left(\cup_{k} Q_{k}\right) \backslash E\right| \leq \sum_{k}\left|Q_{k} \backslash E\right| \\
|A \cap E| \leq \sum_{k}\left|Q_{k} \backslash E\right|
\end{gathered}
$$

so that

$$
|A|_{e} \geq|A \backslash E|+|A \cap E|-\varepsilon
$$

which proves the claim because ε is arbitrary.

Problem 4, (3 points): Please work Problem 2.3.19 in Heil.
Solution: The function $f(t)=\left|E \cap B_{t}\right|$ is increasing by monotonicity. Pick any increasing sequence t_{k} that converges to t. Then $E \cap B_{t_{k}}$ is and increasing sequence of nested sets and

$$
\lim _{k \rightarrow \infty}\left|E \cap B_{t_{k}}\right|=\left|\cup_{k} E \cap B_{t_{k}}\right|=\left|E \cap B_{t}\right|
$$

So $f(t)$ is continuous from the left. If t_{k} is any sequence decreasing towards t then

$$
\lim _{k \rightarrow \infty} f\left(t_{k}\right)=\left|\cap_{k} E \cap B_{t_{k}}\right|=f(t)
$$

Thus f is continuous on $(0, \infty)$. c) follows by taking $t_{k} \rightarrow \infty$ and b) follows from $f(t) \leq$ $B_{t} \mid \rightarrow 0$ as $t \rightarrow 0$. The last assumption implies that $f(t)$ is bounded and any continuous monotone increasing function that is bounded is uniformly continuous.

Problem 5, (5 points): Please do problem 2.4.8 in Heil.
Solution: a) For any set $E \subset \mathbb{R}^{d}$ there exists a G_{δ} set G with $E \subset G$ and $|E|_{e}=|G|$. Thus we have $E_{k} \subset G_{k}$ and $\left|E_{k}\right|_{e}=\left|G_{k}\right|$ for $k=1,2, \ldots$ We do not know, however, whether the G_{k} are nested. Instead of G_{k} we consider for any $m=1,2, \ldots$

$$
B_{m}:=\cap_{k=m}^{\infty} G_{k}
$$

We obviously have that $B_{m} \subset B_{m+1}$. Further, since $E_{m} \subset E_{k} \subset G_{k}$ for all $k \geq m$ we have that $E_{m} \subset B_{m}$. Thus, by continuity

$$
\left|\cup_{m} B_{m}\right|=\lim _{m \rightarrow \infty}\left|B_{m}\right|
$$

and hence by monotonicity

$$
\left|\cup_{m} E_{m}\right|_{e} \leq\left|\cup_{m} B_{m}\right|=\lim _{m \rightarrow \infty}\left|B_{m}\right| \leq \liminf _{m \rightarrow \infty}\left|G_{m}\right|=\lim _{m \rightarrow \infty}\left|E_{m}\right|_{e}
$$

Hence

$$
\left|\cup_{m} E_{m}\right|_{e} \leq \lim _{m \rightarrow \infty}\left|E_{m}\right|_{e}
$$

By monotonicity

$$
\left|\cup_{m} E_{m}\right|_{e} \geq\left|E_{k}\right|_{e}
$$

for all $k=1,2, \ldots$ and hence

$$
\left|\cup_{m} E_{m}\right|_{e} \geq \lim _{m \rightarrow \infty}\left|E_{m}\right|_{e}
$$

b) Recall the non-measurable sets we constructed in class. There were countably many congruent subsets of the circle of circumference 1. Call them M_{k}. They had the property that $M_{k} \cap M_{\ell}=\emptyset$ for $k \neq \ell$ and $\cup_{k} M_{k}=C$ the circle. Consider the sets $B_{m}=\cup_{k=m}^{\infty} M_{k}$. We have that $B_{1} \supset B_{2} \supset B_{3} \cdots$ which are nested. Each set has finite exterior measure because it is a subset of C. Further

$$
\cap_{m=1}^{\infty} B_{m}=\emptyset
$$

because it consists precisely of the points that are in infinitely of the sets M_{k} which are disjoint. The sets M_{k} all have the same exterior measure, since they are congruent. Call this number K. This number cannot be zero since by subadditivity

$$
1=|C| \leq \sum_{k}\left|M_{k}\right|_{e}
$$

Hence

$$
\left|B_{m}\right|_{e} \geq\left|M_{m}\right|_{e}=K
$$

and

$$
\liminf _{m \rightarrow \infty}\left|B_{m}\right|_{e} \geq K
$$

whereas

$$
\left|\cap_{m=1}^{\infty} B_{m}\right|_{e}=0 .
$$

