HOMEWORK 5, DUE THURSDAY FEBRUARY 13

Problem 1, (5 points): Please do problem 3.1.14 in Heil
Solution: Since f is monoton increasing the set $\{f>a\}$ is of the form $(c, \infty) \cap E$ or of the form $[c, \infty) \cap E$. These sets are measurable.

Problem 2, (5 points): Please do problem 3.1.17 in Heil
Solution: The set

$$
\{f=a\}=\{f \geq a\} \cap\{f \leq a\}
$$

both of which are measurable.
Now take a non-measurable set $A \subset[0,1]$ and define $f(x)=x$ and $x \in A$ and $f(x)=x+1$ for $x \in[0,1] \backslash A$. The set $\{f \geq 1\}=[0,1] \backslash A$ and $\{f<1\}=A$ and f is not measurable. The set $f^{-1}(c)$ is either empty or a single point and these sets are measurable.

Problem 3, (5 points): Please work problem 3.2.9 a) and b)
Solution: The set $\left\{\phi_{n}>a\right\}$ is measurable since it is disjoint union of intervals. Suppose now that f is continuous at the point x_{0}. This means that for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
$$

whenever $\left|x-x_{0}\right|<\delta$. For every n there exists k so that $\frac{k}{n} \leq x_{0}<\frac{k+1}{n}$. Pick N such $1 / N<\delta$. Then for all $n>N$ we have that

$$
\left|\frac{k}{n}-x_{0}\right|<\delta
$$

for some k and hence

$$
\left|\phi_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|=\left|\sum_{k \in \mathbb{Z}}\left[f\left(\frac{k}{n}\right)-f\left(x_{0}\right)\right] \chi_{\left[\frac{k}{n}, \frac{k+1}{n}\right)}\left(x_{0}\right)\right|=\left|f\left(\frac{k}{n}\right)-f\left(x_{0}\right)\right|<\varepsilon
$$

which means that $\phi_{n}\left(x_{0}\right)$ converges to $f\left(x_{0}\right)$. If f is continuous at almost every point, then ϕ_{n} converges a.e. to f and since the pointwise limit of measurable functions is measurable, f is measurable.

Problem 4, (5 points): Please do problem 3.2.21 a) in Heil
Solution: Consider the sets

$$
E_{n}=\{|f|>n\}
$$

where $n=1,2,3 \ldots$. Since $|E|<\infty,\left|E_{n}\right|<\infty$. Moreover, $E_{1} \supset E_{2} \supset E_{3} \ldots$. The set

$$
\cap_{n} E_{n}
$$

must be a set of measure zero, because f is everywhere defined and finite. By continuity

$$
\lim _{n \rightarrow \infty}\left|E_{n}\right|=0
$$

Pick and $\varepsilon>0$. There exists N such that $\left|E_{N}\right|<\varepsilon / 2$. Moreover, since E_{N} is measurable, there exists a closed set $F \subset E \backslash E_{N}$ such that $\left|\left(E \backslash E_{N}\right) \backslash F\right|<\varepsilon / 2$. Hence

$$
E \backslash F=\left[\left(E \backslash E_{N}\right) \backslash F\right] \cup\left[E_{N} \backslash F\right]
$$

and

$$
|E \backslash F| \leq \varepsilon
$$

On F the function is a.e. bounded by N.

Problem 5, (5 points): Please work problem 3.3.8 in Heil
Solution: Suppose that $f_{n} \rightarrow f$ in $L^{\infty}(E)$. This means that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. For each n there exists a set Z_{n} with $\left|Z_{n}\right|=0$ such that

$$
\sup _{x \notin Z_{n}}\left|f(x)-f_{n}(x)\right|=\left\|f-f_{n}\right\|_{\infty} .
$$

Set $Z=\cup Z_{N}$ and note that $|Z|=0$. Moreover,

$$
\sup _{x \notin Z}\left|f(x)-f_{n}(x)\right|=\left\|f-f_{n}\right\|_{\infty} \rightarrow 0
$$

as $n \rightarrow \infty$. This means that f_{n} converges uniformly to f on $E \backslash Z$. Conversely, if f_{n} converges uniformly fo f on $E \backslash Z$ with $|Z|=0$, then

$$
\sup _{x \in E \backslash Z}\left|f(x)-f_{n}(x)\right| \rightarrow 0
$$

However,

$$
\sup _{x \in E \backslash Z}\left|f(x)-f_{n}(x)\right|=\left\|f-f_{n}\right\|_{\infty} .
$$

