HOMEWORK 5, DUE THURSDAY FEBRUARY 13

Problem 1, (5 points): Please do problem 3.1.14 in Heil

Solution: Since f is monoton increasing the set $\{f > a\}$ is of the form $(c, \infty) \cap E$ or of the form $[c, \infty) \cap E$. These sets are measurable.

Problem 2, (5 points): Please do problem 3.1.17 in Heil Solution: The set

 $\{f=a\}=\{f\geq a\}\cap\{f\leq a\}$

both of which are measurable.

Now take a non-measurable set $A \subset [0, 1]$ and define f(x) = x and $x \in A$ and f(x) = x + 1 for $x \in [0, 1] \setminus A$. The set $\{f \ge 1\} = [0, 1] \setminus A$ and $\{f < 1\} = A$ and f is not measurable. The set $f^{-1}(c)$ is either empty or a single point and these sets are measurable.

Problem 3, (5 points): Please work problem 3.2.9 a) and b)

Solution: The set $\{\phi_n > a\}$ is measurable since it is disjoint union of intervals. Suppose now that f is continuous at the point x_0 . This means that for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(x_0)| < \varepsilon$$

whenever $|x - x_0| < \delta$. For every *n* there exists *k* so that $\frac{k}{n} \le x_0 < \frac{k+1}{n}$. Pick *N* such $1/N < \delta$. Then for all n > N we have that

$$\left|\frac{k}{n} - x_0\right| < \delta$$

for some k and hence

$$|\phi_n(x_0) - f(x_0)| = |\sum_{k \in \mathbb{Z}} [f(\frac{k}{n}) - f(x_0)] \chi_{[\frac{k}{n}, \frac{k+1}{n})}(x_0)| = |f(\frac{k}{n}) - f(x_0)| < \varepsilon$$

which means that $\phi_n(x_0)$ converges to $f(x_0)$. If f is continuous at almost every point, then ϕ_n converges a.e. to f and since the pointwise limit of measurable functions is measurable, f is measurable.

Problem 4, (5 points): Please do problem 3.2.21 a) in Heil **Solution:** Consider the sets

$$E_n = \{|f| > n\}$$

where $n = 1, 2, 3...$ Since $|E| < \infty$, $|E_n| < \infty$. Moreover, $E_1 \supset E_2 \supset E_3 \cdots$. The set
 $\cap_n E_n$

must be a set of measure zero, because f is everywhere defined and finite. By continuity

$$\lim_{n \to \infty} |E_n| = 0$$

Pick and $\varepsilon > 0$. There exists N such that $|E_N| < \varepsilon/2$. Moreover, since E_N is measurable, there exists a closed set $F \subset E \setminus E_N$ such that $|(E \setminus E_N) \setminus F| < \varepsilon/2$. Hence

 $E \setminus F = [(E \setminus E_N) \setminus F] \cup [E_N \setminus F]$

and

$$|E \setminus F| \le \varepsilon$$

On F the function is a.e. bounded by N.

Problem 5, (5 points): Please work problem 3.3.8 in Heil **Solution:** Suppose that $f_n \to f$ in $L^{\infty}(E)$. This means that $||f_n - f||_{\infty} \to 0$ as $n \to \infty$. For each *n* there exists a set Z_n with $|Z_n| = 0$ such that

$$\sup_{x \notin Z_n} |f(x) - f_n(x)| = ||f - f_n||_{\infty} .$$

Set $Z = \bigcup Z_N$ and note that |Z| = 0. Moreover,

$$\sup_{x \notin Z} |f(x) - f_n(x)| = ||f - f_n||_{\infty} \to 0$$

as $n \to \infty$. This means that f_n converges uniformly to f on $E \setminus Z$. Conversely, if f_n converges uniformly fo f on $E \setminus Z$ with |Z| = 0, then

$$\sup_{x \in E \setminus Z} |f(x) - f_n(x)| \to 0 .$$

However,

$$\sup_{x\in E\setminus Z} |f(x)-f_n(x)| = ||f-f_n||_{\infty} .$$