HOMEWORK 6 , DUE THURSDAY FEBRUARY 20

Problem 1, (5 points): Please work problem 3.3.9 in Heil.
Solution: If $[a, a+1]$ and $[b, b+1]$ are disjoint then $\left\|f_{a}-f_{b}\right\|_{\infty}=1$. If $[a, a+1]$ and $[b, b+1]$ intersect but $a \neq b$ then $\left\|f_{a}-f_{b}\right\|_{\infty}=2$. In any case there is an uncountable set S of numbers such that if $a, b \in S,\left\|f_{a}-f_{b}\right\|_{\infty}=1$.

Problem 2, (5 points): Please work problem 3.4.5 in Heil.
Solution: a) Take the sequence $f_{n}(x)=\max |x|, n$ on the real line. The point wise limit of this sequence is $f(x)=|x|$. If A is any set the uniform convergence on this set means that

$$
\sup _{x \in A}\left|f_{n}(x)-f(x)\right| \rightarrow 0
$$

as $n \rightarrow \infty$. If $\mathbb{R} \backslash A$ has finite measure, there exists a sequence of points $x_{j} \in A$ with $x_{j} \rightarrow \infty$ as $j \rightarrow \infty$. But then

$$
\sup _{A}\left|f_{n}(x)-f(x)\right|=\infty
$$

and the convergence is not uniform.
For b), take the interval $[-1,1]$ and the sequence of measurable functions

$$
f_{n}(x)=n \chi_{-1 / 2,1 / 2}
$$

The limit of this sequence is the function f that vanishes outside the interval $[-1 / 2,1 / 2]$ and is identically $+\infty$ on the interval $[-1 / 2,1 / 2]$. For $\varepsilon<1 / 2$ any subset $A \subset[-1,1]$ with $|[-1,1] \backslash A|<\varepsilon$ must intersect the set $[-1 / 2,1 / 2]$ in a set with positive measure. On this intersection

$$
\sup _{A}\left|f_{n}(x)-f(x)\right|=\infty
$$

and hence Egorov's theorem does not hold.

Problem 3, (5 points): Please solve problem 3.5.12 in Heil.
Solution: The pointwise limit of the sequence is the function which is 1 for $|x|<1,0$ for $|x|=1$ and -1 for $|x|>1$. The sequence f_{n} is continuous, the limiting function is not continuous and hence the convergence cannot be uniform. In the region $|x|<1$ we have that

$$
\left|\frac{1-|x|^{n}}{1+|x|^{n}}-1\right|>\varepsilon
$$

implies

$$
1>|x|>\left(\frac{\varepsilon}{2-\varepsilon}\right)^{1 / n}
$$

A similar estimate holds for $|x|>1$ from which we see that the measure of the region where $\left|f_{n}-f\right|>\varepsilon$ converges to zero as $n \rightarrow \infty$.

Problem 4, (5 points): Please work problem 3.6.2 a) and b) (not c)) in Heil.

Solution: a) implies b) is Luzin's theorem. To see the converse, consider the set $A=\{f \geq$ $a\}$. Pick any $\varepsilon>0$. There exists a closed set $F \subset E$ such that $|E \backslash F|<\varepsilon$. The set $G=\{x \in F: f(x) \geq a\}$ is closed and hence measurable since f is continuous on F. Since $A \backslash G \subset E \backslash F$ we also have that $|A \backslash G|_{e}<\varepsilon$. Since ε is arbitrary, A is measurable.

Problem 5, (5 points): Please solve problem 4.1. 3 d) and e) only, in Heil.
Solution: Since ϕ is simple and non-negative, it is of the form

$$
\phi=\sum_{j=1}^{N} c_{j} \chi_{E_{j}}
$$

where $c_{j}>0$ and E_{j} measurable.
a) Since

$$
\sum_{n=1}^{\infty} \int_{A_{n}} \phi=\sum_{j=1}^{N} c_{j}\left|E_{j} \cap A_{n}\right|
$$

it follows by countable additivity that this equals

$$
\sum_{j=1}^{N} c_{j}\left|E_{j} \cap\left(\cup_{n=1}^{\infty} A_{n}\right)\right|=\int_{\cup_{n=1}^{\infty} A_{n}} \phi
$$

b) We have that

$$
\lim _{n \rightarrow \infty} \int \phi=\lim _{n \rightarrow \infty} \sum_{j=1}^{N} c_{j}\left|A_{n} \cap E_{j}\right|
$$

Now $A_{n} \cap E_{j} \subset A_{n+1} \cap E_{j}$ all n and j and hence

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{N} c_{j}\left|A_{n} \cap E_{j}\right|=\sum_{j=1}^{N} c_{j}\left|A \cap E_{j}\right|=\int_{A} \phi
$$

