HOMEWORK 7 , DUE THURSDAY MARCH 5

Problem 1, (5 points): Please do problem 4.4.15 in Heil
Solution: Consider the function $x^{\alpha} \chi_{[\varepsilon, 1]}$ where $\varepsilon>0$. This function is certainly integrable and since it is piecewise continuous we know that its Lebesgue integral is the same as its Riemann integral. Hence for $\alpha \neq 1$

$$
\int x^{\alpha} \chi_{[\varepsilon, 1]} d x=\frac{1-\varepsilon^{\alpha+1}}{\alpha+1} .
$$

If $\alpha>-1$ the right side converges to $1 /(\alpha+1)$ and since $x^{\alpha} \chi_{[\varepsilon, 1]}$ converges monotonically to $x^{\alpha} \chi_{[0,1]}$ this function is integrable by monotone convergence. If $\alpha>1$ the right side diverges as $\varepsilon \rightarrow 0$ and once more by monotone convergence the function $x^{\alpha} \chi_{[\varepsilon, 1]}$ is not integrable. As similar argument works for $\alpha=1$ using the logarithm.

For the function $g_{\beta}(x)=x^{\beta} \chi_{[1, \infty)}$ is the monotone limit of the sequence $x^{\beta} \chi_{[1, n)}$ as $n \rightarrow \infty$. By the argument above we see that the function g_{β} is integrable if $\beta<-1$ and otherwise not.

Problem 2, (5 points): Please work problem 4.4.22 in Heil
Solution: Since for $a<b$

$$
\int f \chi_{[0, b]}-\int f \chi_{[0, a]}=\int f \chi_{(a, b]}=0
$$

we have that the integral vanishes for every interval in $[0,1]$. In particular for any open interval. Every open set $U \subset[0,1]$ can be written as a countable number of disjoint open intervals I_{k} (note: $[0, a)$ and $(b, 1]$ are open relative to the interval $[0,1]$. Set

$$
\phi_{N}(x)=\sum_{k=1}^{N} \chi_{I_{k}}(x) .
$$

We have that ϕ_{N} converges to $\chi_{U}(x)$ pointwise and since $f \in L^{1}$ we have that

$$
\left|\phi_{N} f\right| \leq|f|
$$

and by the dominated convergence theorem

$$
\int \phi_{N} f \rightarrow \int \chi_{U} f=\int_{U} f
$$

For each k we have that $\int_{I_{k}} f=0$ and therefore $\int_{U} f=0$. Pick and G_{δ} set H. There exists a decreasing sequence of open sets U_{k} so that $\cap U_{k}=h$ and in particular $\chi_{U_{k}} \rightarrow \chi_{H}$ pointwise. Again by dominated convergence

$$
\int_{U_{k}} f \rightarrow \int_{H} f
$$

and hence $\int_{H} f=0$. Moreover any measurable set A can be written as $A=H \backslash Z$ where $|Z|=0$ and hence

$$
\int_{A} f=0
$$

for any measurable set. Now for $t>0$ we have that

$$
0=\int_{\{f>t\}} f \geq t|\{f>t\}|
$$

and hence $|\{f>t\}|=0$. Similarly

$$
0=\int_{\{f<-t\}} f \leq-t|\{f<-t\}|
$$

and hence $|\{f<-t\}|=0$. Thus $f=0$ a.e.

Problem 3, (5 points): Please do problem 4.4.23 in Heil Solution: By Fatou's lemma

$$
C \geq \liminf _{n \rightarrow \infty} \int\left|f_{n}\right| \geq \int|f|
$$

and hence f is integrable.
Now

$$
\left|\left|f_{n}\right|-\left|f-f_{n}\right|-|f|\right| \leq\left|\left|f_{n}\right|-\left|f-f_{n}\right|\right|+|f| \leq 2|f|
$$

and hence by dominated convergence

$$
\lim _{n \rightarrow \infty} \int| | f_{n}\left|-\left|f-f_{n}\right|-|f|\right|=0
$$

which is a slightly stronger statement than required. We need $\left\|f_{n}\right\|_{1}<C$. The sequence $\chi_{[-n, n]}$ provides a counterexample. It converges pointwise to the function 1 which is not intergable on the real line.

Problem 4, (5 points): Please do problem 4.5.15 a) in Heil Solution: On the interval $[1,2]$ we have that

$$
\left|\frac{n^{2} \sin (x / n)}{1+n x^{2}}\right| \leq \frac{n^{2} \frac{x}{n}}{1+n x^{2}}=\frac{n x}{1+n x^{2}}=\frac{x}{\frac{1}{n}+x^{2}} \leq \frac{1}{x}
$$

using that $|\sin (x)| \leq|x|$. The function $1 / x$ is integrable on the interval [1,2]. Now, as $n \rightarrow \infty$ we find that

$$
\frac{n^{2} \sin (x / n)}{1+n x^{2}}=\frac{n \sin (x / n)}{1 / n+x^{2}} \rightarrow 1 / x
$$

and by dominated convergence

$$
\lim _{n \rightarrow \infty} \int_{1}^{2} \frac{n^{2} \sin (x / n)}{1+n x^{2}} d x=\ln (2)
$$

Problem 5, (5 points): Please work problem 4.5.16 in Heil Solution:
a) If $f=0$ a.e., then obviously $\inf _{A} f=0$. Consider the set $\{f>\alpha\}$ where α is real. The function is measurable and integrable and hence for $\alpha>0$

$$
0=\int_{f>\alpha} f \geq \alpha|\{f>\alpha\}|
$$

and hence $|\{f>0\}|=0$. Similarly, for $\alpha<0$

$$
0=\int_{f<\alpha} f \leq \alpha|\{f<\alpha\}|
$$

and since $\alpha<0,|\{f<0\}|=0$.
b) Consider the set $\{|f|>n\}$. Since f is integrable we find that $|f| \chi_{|f|>n} \leq|f|$ and

$$
\lim _{n \rightarrow \infty} \int_{|f|>n}|f|=0
$$

by dominated convergence. For any $\varepsilon>0$ the exists N such that $\lim _{n \rightarrow \infty} \int_{|f|>N}|f|<\varepsilon$. Now set

$$
A=E \backslash\{|f|>N\}
$$

On A the function $|f|$ is bounded by N and $\int_{E \backslash A}|f|<\varepsilon$.

