HOMEWORK 7, DUE THURSDAY MARCH 5

Problem 1, (5 points): Please do problem 4.4.15 in Heil

Solution: Consider the function $x^{\alpha}\chi_{[\varepsilon,1]}$ where $\varepsilon > 0$. This function is certainly integrable and since it is piecewise continuous we know that its Lebesgue integral is the same as its Riemann integral. Hence for $\alpha \neq 1$

$$\int x^{\alpha} \chi_{[\varepsilon,1]} dx = \frac{1 - \varepsilon^{\alpha+1}}{\alpha+1} \; .$$

If $\alpha > -1$ the right side converges to $1/(\alpha + 1)$ and since $x^{\alpha}\chi_{[\varepsilon,1]}$ converges monotonically to $x^{\alpha}\chi_{[0,1]}$ this function is integrable by monotone convergence. If $\alpha > 1$ the right side diverges as $\varepsilon \to 0$ and once more by monotone convergence the function $x^{\alpha}\chi_{[\varepsilon,1]}$ is not integrable. As similar argument works for $\alpha = 1$ using the logarithm.

For the function $g_{\beta}(x) = x^{\beta} \chi_{[1,\infty)}$ is the monotone limit of the sequence $x^{\beta} \chi_{[1,n)}$ as $n \to \infty$. By the argument above we see that the function g_{β} is integrable if $\beta < -1$ and otherwise not.

Problem 2, (5 points): Please work problem 4.4.22 in Heil Solution: Since for a < b

$$\int f\chi_{[0,b]} - \int f\chi_{[0,a]} = \int f\chi_{(a,b]} = 0$$

we have that the integral vanishes for every interval in [0, 1]. In particular for any open interval. Every open set $U \subset [0, 1]$ can be written as a countable number of disjoint open intervals I_k (note: [0, a) and (b, 1] are open relative to the interval [0, 1]. Set

$$\phi_N(x) = \sum_{k=1}^N \chi_{I_k}(x) \; .$$

We have that ϕ_N converges to $\chi_U(x)$ pointwise and since $f \in L^1$ we have that

$$|\phi_N f| \le |f|$$

and by the dominated convergence theorem

$$\int \phi_N f \to \int \chi_U f = \int_U f \; .$$

For each k we have that $\int_{I_k} f = 0$ and therefore $\int_U f = 0$. Pick and G_δ set H. There exists a decreasing sequence of open sets U_k so that $\cap U_k = h$ and in particular $\chi_{U_k} \to \chi_H$ pointwise. Again by dominated convergence

$$\int_{U_k} f \to \int_H f$$

and hence $\int_H f = 0$. Moreover any measurable set A can be written as $A = H \setminus Z$ where |Z| = 0 and hence

$$\int_{A} f = 0$$

for any measurable set. Now for t > 0 we have that

$$0 = \int_{\{f > t\}} f \ge t |\{f > t\}|$$

and hence $|\{f > t\}| = 0$. Similarly

$$0 = \int_{\{f < -t\}} f \le -t |\{f < -t\}|$$

and hence $|\{f < -t\}| = 0$. Thus f = 0 a.e.

Problem 3, (5 points): Please do problem 4.4.23 in Heil Solution: By Fatou's lemma

$$C \ge \liminf_{n \to \infty} \int |f_n| \ge \int |f|$$

and hence f is integrable.

Now

$$\left| |f_n| - |f - f_n| - |f| \right| \le \left| |f_n| - |f - f_n| \right| + |f| \le 2|f|$$

and hence by dominated convergence

$$\lim_{n \to \infty} \int \left| |f_n| - |f - f_n| - |f| \right| = 0$$

which is a slightly stronger statement than required. We need $||f_n||_1 < C$. The sequence $\chi_{[-n,n]}$ provides a counterexample. It converges pointwise to the function 1 which is not intergable on the real line.

Problem 4, (5 points): Please do problem 4.5.15 a) in Heil **Solution:** On the interval [1, 2] we have that

$$\left|\frac{n^2 \sin(x/n)}{1+nx^2}\right| \le \frac{n^2 \frac{x}{n}}{1+nx^2} = \frac{nx}{1+nx^2} = \frac{x}{\frac{1}{n}+x^2} \le \frac{1}{x}$$

using that $|\sin(x)| \le |x|$. The function 1/x is integrable on the interval [1, 2]. Now, as $n \to \infty$ we find that

$$\frac{n^2 \sin(x/n)}{1+nx^2} = \frac{n \sin(x/n)}{1/n+x^2} \to 1/x$$

and by dominated convergence

$$\lim_{n \to \infty} \int_{1}^{2} \frac{n^{2} \sin(x/n)}{1 + nx^{2}} dx = \ln(2)$$

Problem 5, (5 points): Please work problem 4.5.16 in Heil **Solution:**

a) If f = 0 a.e., then obviously $\inf_A f = 0$. Consider the set $\{f > \alpha\}$ where α is real. The function is measurable and integrable and hence for $\alpha > 0$

$$0 = \int_{f > \alpha} f \ge \alpha |\{f > \alpha\}|$$

and hence $|\{f>0\}|=0.$ Similarly, for $\alpha<0$

$$0 = \int_{f < \alpha} f \le \alpha |\{f < \alpha\}|$$

and since $\alpha < 0$, $|\{f < 0\}| = 0$. b) Consider the set $\{|f| > n\}$. Since f is integrable we find that $|f|\chi_{|f|>n} \le |f|$ and

$$\lim_{n\to\infty}\int_{|f|>n}|f|=0$$

by dominated convergence. For any $\varepsilon > 0$ the exists N such that $\lim_{n\to\infty} \int_{|f|>N} |f| < \varepsilon$. Now set

$$A = E \setminus \{|f| > N\}$$

On A the function |f| is bounded by N and $\int_{E \setminus A} |f| < \varepsilon$.