## HOMEWORK , DUE THURSDAY APRIL 9. PLEASE UPLOAD THE HOMEWORK ON CANVAS

Problem 1, (5 points): Please do Problem 5.5.12. in Heil (Use the Lebesgue differentiation theorem.)
Solution: Since $f \in L^{1}[a, b]$ we know, by the Lebesgue differentiation theorem, that

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(y) d y=f(x)
$$

for almost every $x \in[a, b]$. Since $\int_{a}^{x} f(y) d y=0$ by assumption, we also know that

$$
\int_{x-\varepsilon}^{x+\varepsilon} f(y) d y=0
$$

and hence $f=0$ almost everywhere.

Problem 2, (5 points): Please work Problem 5.5.14 in Heil.
Solution: We have that

$$
f \star g_{h}(x)-f(x)=\int_{\mathbb{R}^{d}}[f(x-y)-f(x)] h^{-d} g(y / h) d y
$$

where we have used that $g \in L^{1}\left(\mathbb{R}^{d}\right)$ and $\int_{\mathbb{R}^{d}} g(y) d y=1$. Note that by a change of variables

$$
\int h^{-d} g(y / h) d y=\int g(y)=1
$$

Recall that the convolution is well defined for a.e. $x \in \mathbb{R}^{d}$. Changing variables we get

$$
f \star g_{h}(x)-f(x)=\int_{\mathbb{R}^{d}}[f(x-h y)-f(x)] g(y) d y
$$

and hence using Fubini

$$
\left\|f \star g_{h}(\cdot)-f(\cdot)\right\|_{1} \leq \int_{\mathbb{R}^{d}}\|f(\cdot-h y)-f(\cdot)\|_{1} g(y) d y .
$$

Now,

$$
\left|\|f(\cdot-h y)-f(\cdot)\|_{1} g(y)\right| \leq 2\|f\|_{1}|g(y)|
$$

and the right side is an integrable function. Since $\|f(\cdot-h y)-f(\cdot)\|_{1} \rightarrow 0$ as $h \rightarrow 0$ for every $y \in \mathbb{R}^{d}$ we have by the Dominated Convergence Theorem that

$$
\lim _{h \rightarrow 0}\left\|f \star g_{h}(\cdot)-f(\cdot)\right\|_{1}=0 .
$$

Note that we did not assume that $g$ was supported in a ball. This works for any $L^{1}$ function $g$ with $\int g=1$.

Problem 3, (5 points): Please do Problem 5.5.16 in Heil

Solution: We have clearly that $M f_{n}(x)$ is an increasing sequence. Hence

$$
\lim _{n \rightarrow \infty} M f_{n}(x)=\sup _{n} M f_{n}(x)
$$

for all $x$. Thus,

$$
\lim _{n \rightarrow \infty} M f_{n}(x)=\sup _{n} \sup _{r>0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} f_{n}(y) d y
$$

and since two supremums can always be interchanged we find

$$
\lim _{n \rightarrow \infty} M f_{n}(x)=\sup _{r>0} \sup _{n} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} f_{n}(y) d y
$$

However, by the monotone convergence theorem

$$
\sup _{n} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} f_{n}(y) d y=\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} f(y) d y
$$

and hence

$$
\lim _{n \rightarrow \infty} M f_{n}(x)=M f(x)
$$

Problem 4, (5 points): Please work Problem 5.5.18 in Heil
Solution: By Tchebyshev's inequality for every function in $L^{1}\left(\mathbb{R}^{d}\right)$,

$$
|\{|f|>\alpha\}| \leq \frac{\|f\|_{1}}{\alpha}
$$

and hence $L^{1}\left(\mathbb{R}^{d}\right) \subset$ Weak $-L^{1}\left(\mathbb{R}^{d}\right)$. The second statement follows from the inequality on the maximal function

$$
|\{M f>\alpha\}| \leq \frac{A}{\alpha} \|\left. f\right|_{1}
$$

Note: The function $|x|^{-d}$ is in Weak $-L^{1}\left(\mathbb{R}^{d}\right)$ but not in $\mid L^{1}\left(\mathbb{R}^{d}\right)$.

Problem 5, (5 points): Please do problem 5.5.19 a) in Heil.
Solution: The exists an $G_{\delta}$ set $H$ with $A \subset H$ and $|A|_{e}=|H|$.Consider the characteristic function $\chi_{H}(x) \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ and note that

$$
\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} \chi_{H}(y) d y=\frac{\left|H \cap B_{r}(x)\right|}{\left|B_{r}(x)\right|}
$$

and by Lebesgue's theorem this converges to 1 for a.e. $x \in H$. It remains to see that

$$
\left|H \cap B_{r}(x)\right|=\left|A \cap B_{r}(x)\right|_{e}
$$

Quite generally, if $B$ is measurable

$$
|A|_{e}=|A \cap B|_{e}+|A \backslash B|_{e}
$$

and

$$
|H|=|H \cap B|+|H \backslash B| .
$$

Since $A \subset H$ we have $|A \cap B|_{e} \leq|H \cap B|$ and $|A \backslash B|_{e} \leq|H \backslash B|$. Since $|A|_{e}=|H|$ it follows that $|A \cap B|_{e}=|H \cap B|$ and $|A \backslash B|_{e}=|H \backslash B|$. Hence

$$
\frac{\left|H \cap B_{r}(x)\right|}{\left|B_{r}(x)\right|}=\frac{\left|A \cap B_{r}(x)\right|_{e}}{\left|B_{r}(x)\right|}
$$

