
PRACTICE MIDTERM EXAM

1. Topics

Some simple facts from standard real analysis, exterior measure, Lebesgue measure, count-
able additivity, Caratheodory’s criterion, non-measurable sets, measurable functions, Egorov’s
and Luzin’s theorem, the Lebesgue intergal for non-negative functions. Monotone convergence
and Fatou’s lemma. Thus the test might cover everything up to and including section 4.2.2
in Heil.

2. Help for the test

You may prepare a sheet both sides with information and bring it to the exam. Otherwise
no help is allowed.

3. Practice Test

Problem 1: Let C ⊂ Rd be compact and f : C → R an upper semicontinuous function.
Prove that f attains its maximum.
Solution: Pick any sequence xn such that f(xn) → supx∈C f(x). Such a sequence exists by
the definition of the supremum although the supremum might be +∞. Since C is compact,
there exists point x ∈ C and a subsequence xnk

such that xnk
→ x as k → ∞. Clearly

limk→∞ f(xnk
) = supx∈C f(x). Since f is upper semi continuous, limk→∞ f(xnk

) ≤ f(x) and
hence f(x) = supx∈C f(x). Thus f attains its maximum on C and the maximum is finite.

Problem 2: Recall that

lim inf
k→∞

Ek = ∩∞k=1(∪∞j=kEk)

Suppose that
∑∞

k=1 |Ek|e <∞. Show that lim infk→∞Ek has measure zero.
Solution: Pick any ε > 0. By assumption, there exists m such that

∞∑
k=m

|Ek|e < ε .

By countable sub-additivity ∣∣∣ ∪∞k=m Ek

∣∣∣ ≤ ∞∑
k=m

|Ek|e < ε .

Since

lim inf
k→∞

Ek ⊂ ∪∞k=mEk

for all m = 1, 2, . . . we have that ∣∣∣ lim inf
k→∞

Ek

∣∣∣ < ε .

Since ε is arbitrary this proves the claim.
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Problem 3: Let Ej ⊂ Rd, j = 1, 2, . . . be a sequence of sets, not necessarily measurable.
Assume that Ej ⊂ Ej+1 for j = 1, 2, . . . . Prove that

| ∪∞
j=1 Ej|e = lim

j→∞
|Ej|e .

Solution: We know that there exists a Gδ set Gk such that Ek ⊂ Gk and

|Ek|e = |Gk| .
We know that the Gk are measurable, but they are not necessarily nested. Consider Am =
∩∞k=mGk this set is also measurable and we have that Am ⊂ Am+1. Thus by continuity

lim
m→∞

|Am| =
∣∣∣ ∪∞m=1 Am

∣∣∣ ,
Since Ek ⊂ En for all n ≥ k we have that Ek ⊂ Gn for all n ≥ k and hence Ek ⊂ Ak all k.

Moreover, |Gk| = |Ek|e ≤ |Ak| ≤ |Gk| and hence |Ek|e = |Ak|. Thus

lim
m→∞

|Em|e =
∣∣∣ ∪∞

m=1 Am

∣∣∣ ≥ ∣∣∣ ∪∞
m=1 Em

∣∣∣
since ∪∞m=1Em ⊂ ∪∞m=1Am. Because Ek ⊂ ∪∞m=1Em we have that

|Ek|e ≤
∣∣∣ ∪∞m=1 Em

∣∣∣
for all k which proves the claim.

Problem 4: Define the inner Lebesgue measure of a set A ⊂ Rd to be

|A|i = sup{|F | : F is closed F ⊂ A}
Prove that if A is Lebesgue measurable then |A|e = |A|i. Moreover, show that if |A|e < ∞
and |A|e = |A|i, then A is Lebesgue measurable.
Solution: Let A be a measurable set. For any closed set F ⊂ A we have that |F | ≤ |A| and
hence |A|i ≤ |A|. For any ε > 0 there exists a closed set F ⊂ A such that |A \ F | < ε. Hence

|F | ≥ |A| − ε

and hence |A|i ≥ |A| − ε and thus |A|i ≥ |A|.
Assume now that A is set with |A|e <∞ and |A|e = |A|i. Pick any ε > 0. By assumption

there exists F ⊂ A closed such that

|F | ≥ |A|e − ε/2 .

Moreover, there exists an open set A ⊂ U such that |U | ≤ |A|e + ε/2. Now

U \ A ⊂ U \ F
and by monotonicity

|U \ A|e ≤ |U \ F | ,
and

|U \ F | = |U | − |F | ≤ |A|i + ε/2− |A|i + ε/2 = ε .

Hence

|U \ A|e < ε

and A is measurable.
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Problem 5, (5 points): In Egorov’s theorem we had to assume that |E| < ∞. Give an
example of a sequence of functions on the whole real line which converges but where Egorov’s
theorem fails.
Solution: Take the sequence fn(x) = max |x|, n on the real line. The point wise limit of this
sequence is f(x) = |x|. If A is any set the uniform convergence on this set means that

sup
x∈A
|fn(x)− f(x)| → 0

as n→∞. If R \A has finite measure, there exists a sequence of points xj ∈ A with xj →∞
as j →∞. But then

sup
A
|fn(x)− f(x)| =∞ ,

and the convergence is not uniform.

Problem 6, (5 points): Prove that f : E → [−∞,∞] is measurable if and only if

{f > r}
is measurable for every r rational.
Solution: If f is measurable then {f > a} is measurable for all a and hence for rational a.
Pick any a real. There exists a sequence of rational number rn < a with rn → a as n → ∞.
Then

∩∞n=1{f > rn} = {f ≥ a} .
and hence {f ≥ a} is measurable. Since a is arbitrary, f is measurable.

Problem 7, (5 points): Assume Fatou’s lemma and deduce the monotone convergence
theorem from it.
Solution: Assume that fn converges monotonically to f . Then we have that∫

E

fn ≤
∫
E

f

for all n = 1, 2, . . . . Since the numbers
∫
E
fn is an increasing sequence we find that

lim sup
n→∞

∫
fn ≤

∫
E

f .

Fatou’s lemma, however says, that

lim inf
n→∞

∫
E

fn ≥
∫
E

lim inf
n→∞

fn =

∫
E

f

which proves the monotone convergence theorem.


