
The thermodynamic limit for matter

In this section we discuss the result of Lieb and Lebowitz concerning the existence
of the free energy for matter consisting of nuclei and electrons. As explained before there
will be three steps involved. First, a universal lower bound on the free energy per unit
volume that is independent of the volume, second a sequence of volumes going to infinity
for which the free energy decreases and finally a proof that the limit is independent for
reasonable shapes. We do not discuss the last point.

We consider the Coulomb system given by the Hamiltonian

H =
N∑
j1

p2
j +

1
M

K∑
k=1

P 2
k + Vc ,

where we have included the kinetic energy of the nuclei. The Hilbert space is then given
by

H = Hel ⊗Hnucl

where
Hel = ∧NL2(Ω;C2) ,

the N -fold antisymmetric tensor product. For the Hilbert space of the nuclei we do not
make any assumptions since the nuclei may be bosons, fermions or a mixture thereof.

We assume that the particles are all in some volume Ω and we set Dirichlet boundary
conditions for the Laplace operators involved. The partition function is then given by

Z = TrHe−βH

and the free energy per unit volume is given by

f(β, V,N,K) = − 1
|Ω|β

log Z

and we are interested in the the limit as

Ω → R3

N,K →∞

in such a way that
N

|Ω|
→ ρel

and
K

|Ω|
→ ρnucl .
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Step 1: The lower bound: We write

H =
1
2
[

N∑
j1

p2
j +

1
M

K∑
k=1

P 2
k ] +

1
2
[

N∑
j1

p2
j +

1
M

K∑
k=1

P 2
k ] + Vc

and note that by the result of Dyson-Lenard, resp. Lieb-Thirring there exists a constant
C(Z) that is independent of N,K and, of course not on Ω so that

H ≥ 1
2
[

N∑
j1

p2
j +

1
M

K∑
k=1

P 2
k ]− C(Z)(N + K) .

Hence
Z ≤ TrHe

− β
2 [

∑N

j=1
p2

j+ 1
M

∑K

k=1
P 2

k ]
eβC(Z)(N+K) .

= TrHele
− β

2

∑N

j=1
p2

j TrHnucle
− β

2M

∑K

k=1
P 2

k eβC(Z)(N+K) .

From this we see that the free energy per unit volume is bounded below by the sum of the
free energies of a noninteracting gas of electrons and nuclei minus

C(z)(ρel + ρnucl) .

This is well known to be bounded below by a function that depends only on the temperature
and the densities ρel and ρnucl.

We come now to the second step which amounts to show that along a suitable sequence
of volumes the free energy per unit volume is a decreasing sequence. The obvious obstacle
here is that the Coulomb potential is of long range and there is no obvious way how to
bound this. Clearly, if the system is macroscopically not neutral there is no thermodynamic
limit. Hence we shall assume neutrality from now on, i.e., the sum of the nuclear charges
is canceled by the sum of the electronic charges.

First we recall Newton’s heorem. Imagine two charge distributions, one of them,
ρ(x) spherically symmetric and the other one µ not necessarily spherically symmetric.
(Spherically symmetric means that ρ(x) = ρ(y) whenever |x| = |y|.

Newton’s theorem the interaction energy between the charges µ and ρ, which is
given by ∫ ∫

ρ(x)µ(y)
|x− y|

dxdy =
∫ ∫

min(
1
|x|

,
1
|y|

)ρ(x)µ(y)dxdy .

In particular if µ is supported inside a ball of radius R, ρ supported outside the ball and if∫
µ(y)dy = 0

then the interaction energy vanishes.
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PROOF: The proof consists of evaluating the integral∫
S2

1
(|x|2 + |y|2 − 2|x|y · w

dw = min(
1
|x|

,
1
|y|

) .

We will encounter the following situation. Given two disjoint balls B1 and B2. In B1

we have N1 electrons and M1 nuclei, so that the system is neutral, i.e,

M1∑
j=1

Zj = N1 .

In the other ball we have N2 electrons and M2 nuclei. For the moment it is not necessary
to assume neutrality in that ball. The Hamiltonian for the first system we call H1 which
includes a Dirichlet condition that confines the particles to the ball B1 and H2 which
includes a Dirichlet condition confining all the particles to the ball B2. Further we call
H the Hamiltonian that includes all the interactions between the particles, i.e., we have
added the Coulomb interactions between the particles in ball B1 and ball B2. Hence

H = H1 + H2 + W

where W is the Coulomb interaction between the particles in ball B1 and B2. The total
Hilbert space is the tensor product of the Hilbert spaces of the particles in B1 and B2, i.e.,

H = H1 ⊗H2 .

Next, consider the partition function

Tre−βH =
∫

B1
N1

dX1

∫
B1

M1

dR1

∫
B2

N2

dX2

∫
B2

M2

dR2e
−β[H1+H2+W ](X1, R1, X2, R2) .

Here we use the notation X1 for the coordinates of the electrons in the B1, R1 all the
coordinates of the nuclei in B1 etc. The function

e−β[H1+H2+W ](X1, R1, X2, R2)

is the heat kernel associated with the operator H evaluated on the diagonal. Our goal is
to prove the inequality

Tre−βH ≥ Tre−βH1Tre−βH2

where the traces are taken over the respective Hilbert spaces.

Using the Peierls-Bogolubov inequality we get that

Tre−βH ≥ Tre−βH1Tre−βH2e−β〈W 〉

where

〈W 〉 =
Tre−β(H1+H2)W

Tre−β(H1+H2)
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The numerator is given by∫
dX1

∫
dR1

∫
dX2

∫
dR2e

−βH1(X1, R1)e−βH2(X2, R2)W (X1, R1, X2, R2)

and hence the expectation value is given by

∑
i,j

∫
dxidyj

ρel
1 (xi)ρel

2 (yj)
|xi − yj |

+ Z2
∑
k,l

∫
dRkdSl

ρnuc
1 (Rk)ρnuc

2 (Sl)
|Rk − Sl|

−Z
∑
i,l

∫
dxidSl

ρel
1 (xi)ρnuc

2 (Sl)
|xi − Sl|

− Z
∑
k,j

∫
dRkdyj

ρnuc
1 (Rk)ρel

2 (yj)
|Rk − yj |

where

ρ1(xi) =
∫

d̂xie
−βH1(X1, R1)∫

e−βH1(X1, R1)

so that ∫
ρ1(xi)dxi = 1 .

The same holds for the other densities. Hence

〈W 〉 =
∫

dxdy
Q1(x)Q2(y)
|x− y|

(1)

where
Q1(x) = N1ρ

el
1 (x)− Z

∑
j

ρnuc(x)

and similarly for Q2. By the neutrality assumption in B1 we have that∫
dxQ1(x) = 0

Further, since the Hamiltonian H1 is unchanged under simultaneous rotation of all the
variables we get that Q1(x) is a radial function. Hence by Newton’s theorem (1) reduces
to ∫

dxdyQ1(x)Q2(y)min(
1
|x|

,
1
|y|

) .

We have placed the origin into the center of B1. Since the two balls are disjoint and since
the origin is in the center of B1 we have that |x| < |y| in the domain of integration. Hence
(1) reduces to ∫

dxQ1(x)
∫

dyQ2(y)
1
|y|

= 0

since Q1 is neutral.

Standard sequence of balls
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In the following we give a sequence of balls with particles in them in such a way that
the there is charge neutrality in each ball. We fix ρel and hence, because the system is
neutral Zρnucl = ρel.

Start with R0 and put

N0 =
4π

3
R3

028ρel

electrons in this ball and of course K0 = N0/Z nuclei. Notice that the density is too big!
For j ≥ 1 define the radii

Rj = (28)jR0

and
Nj = (28)3j−1N0 ,Kj = Nj/Z

so that
Nj

4π
3 R3

j

= ρel .

Define the numbers
mj = (27)j−1(28)2j .

Then by the Cheese Theorem we can pack a ball of radius RK by mK balls of radius R0,
mK−1 balls of radius R1 etc m1 balls of radius RK−1 and all these balls are disjoint.

If we consider the partition function ZK for the Coulomb system in the ball BK we
know from our previous considerations that

ZK ≥
K−1∏
j=0

Z
mK−j

j

and hence the free energy fK per unit volume satisfies the estimate

fK =
−β−1 log ZK

4π
3 R3

K

≤
K−1∑
j=0

mK−j

R3
j

R3
K

fj

or

fK ≤
K−1∑
j=0

(27)K−j−1(28)2(K−j)(28)3(j−K)fj =
1
27

K−1∑
j=0

δK−j

27
fj .

From this and the stability bound we will derive the existence of the thermodynamic
limit.

Define the numbers ek ≥ 0 by

fK =
K−1∑
j=0

δK−j

27
fj − eK .
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This renewal equation can be iterated and one gets soon the clue that the solution is given
by

fK =
f0

28
−

K∑
j=1

ej

28
− δeK (2)

which can be checked. Note that fK satisfies the recursion

fK − fK−1 =
1
28

fK−1 + eK−1 − eK .

Since fK is bounded below we get that

K∑
j=1

ej

28

is bounded above and hence must converge. In particular this shows that eK → 0 as
K →∞ and hence

f = lim
K→∞

fK =
f0

28
−
∞∑

j=1

ej .
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